TPTP Problem File: DAT054_1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : DAT054_1 : TPTP v9.0.0. Released v5.0.0.
% Domain : Data Structures
% Problem : Decreasing pointer list
% Version : Especial.
% English :
% Refs : [Wal06] Waldmann (2006), Email to Geoff Sutcliffe
% Source : [Wal06]
% Names :
% Status : CounterSatisfiable
% Rating : 0.33 v9.0.0, 0.67 v8.2.0, 0.33 v7.1.0, 0.50 v7.0.0, 0.33 v6.4.0, 0.67 v6.3.0, 1.00 v6.2.0, 0.88 v6.1.0, 0.89 v6.0.0, 1.00 v5.4.0, 0.88 v5.3.0, 0.90 v5.2.0, 1.00 v5.0.0
% Syntax : Number of formulae : 6 ( 0 unt; 5 typ; 0 def)
% Number of atoms : 11 ( 2 equ)
% Maximal formula atoms : 11 ( 1 avg)
% Number of connectives : 15 ( 5 ~; 5 |; 4 &)
% ( 0 <=>; 1 =>; 0 <=; 0 <~>)
% Maximal formula depth : 10 ( 10 avg)
% Maximal term depth : 3 ( 1 avg)
% Number arithmetic : 6 ( 3 atm; 0 fun; 2 num; 1 var)
% Number of types : 3 ( 1 usr; 1 ari)
% Number of type conns : 3 ( 3 >; 0 *; 0 +; 0 <<)
% Number of predicates : 4 ( 1 usr; 0 prp; 1-2 aty)
% Number of functors : 5 ( 3 usr; 3 con; 0-1 aty)
% Number of variables : 4 ( 4 !; 0 ?; 4 :)
% SPC : TF0_CSA_EQU_ARI
% Comments : This was intended to be a theorem, but the monotonicity conjunct
% does require the 2nd and 3rd elements' data to be decreasing.
%------------------------------------------------------------------------------
tff(element_type,type,
element: $tType ).
tff(data_type,type,
data: element > $int ).
tff(next_type,type,
next: element > element ).
tff(iselem_type,type,
iselem: element > $o ).
tff(a_type,type,
a: element ).
tff(decreasing_pointer_list,conjecture,
( ( ! [X: element,Z: $int] :
( ~ iselem(X)
| ( data(X) != Z )
| $less(0,Z) )
& ! [X: element,Y: element] :
( ~ iselem(X)
| ~ iselem(next(Y))
| ( next(X) != Y )
| $less(data(Y),data(X)) )
& iselem(a)
& iselem(next(a))
& iselem(next(next(a))) )
=> $lesseq(3,data(a)) ) ).
%------------------------------------------------------------------------------