TPTP Problem File: CSR307_1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : CSR307_1 : TPTP v9.1.0. Released v9.1.0.
% Domain : Commonsense Reasoning
% Problem : Water level is 3 at time 4
% Version : [Mue04] axioms : Especial.
% English :
% Refs : [MS05] Mueller & Sutcliffe (2005), Reasoning in the Event Cal
% : [Mue04] Mueller (2004), A Tool for Satisfiability-based Common
% : [MS02] Miller & Shanahan (2002), Some Alternative Formulation
% Source : [MS05]
% Names :
% Status : Theorem
% Rating : 0.00 v9.1.0
% Syntax : Number of formulae : 52 ( 12 unt; 20 typ; 0 def)
% Number of atoms : 101 ( 27 equ)
% Maximal formula atoms : 11 ( 3 avg)
% Number of connectives : 94 ( 25 ~; 7 |; 42 &)
% ( 7 <=>; 13 =>; 0 <=; 0 <~>)
% Maximal formula depth : 12 ( 6 avg)
% Maximal term depth : 3 ( 1 avg)
% Number arithmetic : 82 ( 6 atm; 16 fun; 22 num; 38 var)
% Number of types : 5 ( 3 usr; 1 ari)
% Number of type conns : 31 ( 12 >; 19 *; 0 +; 0 <<)
% Number of predicates : 12 ( 10 usr; 0 prp; 2-4 aty)
% Number of functors : 11 ( 7 usr; 8 con; 0-2 aty)
% Number of variables : 71 ( 60 !; 11 ?; 71 :)
% SPC : TF0_THM_EQU_ARI
% Comments :
%------------------------------------------------------------------------------
%----Include event calculus axioms
include('Axioms/CSR001_0.ax').
%----Include kitchen sink axioms
include('Axioms/CSR001_1.ax').
%------------------------------------------------------------------------------
tff(happens_all_defn,axiom,
! [Event: event,Time: $int] :
( happens(Event,at_time(Time))
<=> ( ( ( Event = tapOn )
& ( Time = 0 ) )
| ( holdsAt(waterLevel(3),at_time(Time))
& holdsAt(filling,at_time(Time))
& ( Event = overflow ) ) ) ) ).
tff(waterLevel_0,axiom,
holdsAt(waterLevel(0),at_time(0)) ).
tff(not_filling_0,axiom,
~ holdsAt(filling,at_time(0)) ).
tff(not_spilling_0,axiom,
~ holdsAt(spilling,at_time(0)) ).
tff(not_released_waterLevel_0,axiom,
! [Height:$int] : ~ releasedAt(waterLevel(Height),at_time(0)) ).
tff(not_released_filling_0,axiom,
~ releasedAt(filling,at_time(0)) ).
tff(not_released_spilling_0,axiom,
~ releasedAt(spilling,at_time(0)) ).
tff(release_from_before,conjecture,
! [X1:$int] :
( releasedAt(spilling,at_time($sum(1,X1)))
=> releasedAt(spilling,at_time(X1)) ) ).
%------------------------------------------------------------------------------