TPTP Problem File: CSR150^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : CSR150^1 : TPTP v9.0.0. Released v4.1.0.
% Domain : Commonsense Reasoning
% Problem : How many grandchildren does John at most have?
% Version : Especial > Reduced > Especial.
% English : The number of persons John is grandparent of is maximally three.
% How many grandchildren does John at most have?
% Refs : [PS07] Pease & Sutcliffe (2007), First Order Reasoning on a L
% : [BP10] Benzmueller & Pease (2010), Progress in Automating Hig
% : [Ben10] Benzmueller (2010), Email to Geoff Sutcliffe
% Source : [Ben10]
% Names : paar_6.tq_SUMO_local [Ben10]
% Status : Theorem
% Rating : 0.12 v9.0.0, 0.08 v8.2.0, 0.09 v8.1.0, 0.08 v7.4.0, 0.11 v7.3.0, 0.10 v7.2.0, 0.12 v7.1.0, 0.14 v7.0.0, 0.12 v6.4.0, 0.14 v6.3.0, 0.17 v6.2.0, 0.00 v6.1.0, 0.50 v6.0.0, 0.17 v5.5.0, 0.20 v5.4.0, 0.25 v5.3.0, 0.50 v5.1.0, 0.75 v5.0.0, 0.50 v4.1.0
% Syntax : Number of formulae : 12 ( 0 unt; 8 typ; 0 def)
% Number of atoms : 10 ( 0 equ; 0 cnn)
% Maximal formula atoms : 3 ( 2 avg)
% Number of connectives : 26 ( 0 ~; 0 |; 2 &; 22 @)
% ( 2 <=>; 0 =>; 0 <=; 0 <~>)
% Maximal formula depth : 8 ( 8 avg)
% Number of types : 3 ( 1 usr)
% Number of type conns : 10 ( 10 >; 0 *; 0 +; 0 <<)
% Number of symbols : 7 ( 7 usr; 2 con; 0-2 aty)
% Number of variables : 9 ( 2 ^; 4 !; 3 ?; 9 :)
% SPC : TH0_THM_NEQ_NAR
% Comments : This is a simple test problem for reasoning in/about SUMO.
% Initally the problem has been hand generated in KIF syntax in
% SigmaKEE and then automatically translated by Benzmueller's
% KIF2TH0 translator into THF syntax.
% : The translation has been applied in two modes: local and SInE.
% The local mode only translates the local assumptions and the
% query. The SInE mode additionally translates the SInE-extract
% of the loaded knowledge base (usually SUMO).
% : The examples are selected to illustrate the benefits of
% higher-order reasoning in ontology reasoning.
%------------------------------------------------------------------------------
%----The extracted Signature
thf(numbers,type,
num: $tType ).
thf(grandchild_THFTYPE_IiioI,type,
grandchild_THFTYPE_IiioI: $i > $i > $o ).
thf(grandparent_THFTYPE_IiioI,type,
grandparent_THFTYPE_IiioI: $i > $i > $o ).
thf(lCardinalityFn_THFTYPE_IIioIiI,type,
lCardinalityFn_THFTYPE_IIioIiI: ( $i > $o ) > $i ).
thf(lJohn_THFTYPE_i,type,
lJohn_THFTYPE_i: $i ).
thf(ltet_THFTYPE_IiioI,type,
ltet_THFTYPE_IiioI: $i > $i > $o ).
thf(n3_THFTYPE_i,type,
n3_THFTYPE_i: $i ).
thf(parent_THFTYPE_IiioI,type,
parent_THFTYPE_IiioI: $i > $i > $o ).
%----The translated axioms
thf(ax,axiom,
! [X: $i,Y: $i] :
( ( grandparent_THFTYPE_IiioI @ X @ Y )
<=> ? [Z: $i] :
( ( parent_THFTYPE_IiioI @ X @ Z )
& ( parent_THFTYPE_IiioI @ Z @ Y ) ) ) ).
thf(ax_001,axiom,
( ltet_THFTYPE_IiioI
@ ( lCardinalityFn_THFTYPE_IIioIiI
@ ^ [X: $i] : ( grandparent_THFTYPE_IiioI @ lJohn_THFTYPE_i @ X ) )
@ n3_THFTYPE_i ) ).
thf(ax_002,axiom,
! [X: $i,Y: $i] :
( ( grandchild_THFTYPE_IiioI @ X @ Y )
<=> ? [Z: $i] :
( ( parent_THFTYPE_IiioI @ Z @ X )
& ( parent_THFTYPE_IiioI @ Y @ Z ) ) ) ).
%----The translated conjectures
thf(con,conjecture,
? [Y: $i] :
( ltet_THFTYPE_IiioI
@ ( lCardinalityFn_THFTYPE_IIioIiI
@ ^ [X: $i] : ( grandchild_THFTYPE_IiioI @ X @ lJohn_THFTYPE_i ) )
@ Y ) ).
%------------------------------------------------------------------------------