TPTP Problem File: CSR148^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : CSR148^1 : TPTP v9.0.0. Released v4.1.0.
% Domain : Commonsense Reasoning
% Problem : Is there a year in which Sue liked somebody?
% Version : Especial > Reduced > Especial.
% English : What holds that holds at all times. Mary likes Bill. During 2009
% Sue liked whoever Mary liked. Is there a year in which Sue liked
% somebody?
% Refs : [PS07] Pease & Sutcliffe (2007), First Order Reasoning on a L
% : [BP10] Benzmueller & Pease (2010), Progress in Automating Hig
% : [Ben10] Benzmueller (2010), Email to Geoff Sutcliffe
% Source : [Ben10]
% Names : paar_4.tq_SUMO_local [Ben10]
% Status : Theorem
% Rating : 0.12 v9.0.0, 0.08 v8.2.0, 0.09 v8.1.0, 0.08 v7.4.0, 0.11 v7.3.0, 0.10 v7.2.0, 0.12 v7.1.0, 0.14 v7.0.0, 0.12 v6.4.0, 0.14 v6.3.0, 0.17 v6.2.0, 0.00 v6.1.0, 0.50 v6.0.0, 0.00 v5.4.0, 0.25 v5.3.0, 0.50 v5.1.0, 0.75 v5.0.0, 0.50 v4.1.0
% Syntax : Number of formulae : 12 ( 2 unt; 8 typ; 0 def)
% Number of atoms : 7 ( 0 equ; 0 cnn)
% Maximal formula atoms : 3 ( 1 avg)
% Number of connectives : 18 ( 0 ~; 0 |; 0 &; 16 @)
% ( 0 <=>; 2 =>; 0 <=; 0 <~>)
% Maximal formula depth : 6 ( 5 avg)
% Number of types : 3 ( 1 usr)
% Number of type conns : 5 ( 5 >; 0 *; 0 +; 0 <<)
% Number of symbols : 7 ( 7 usr; 4 con; 0-2 aty)
% Number of variables : 5 ( 0 ^; 3 !; 2 ?; 5 :)
% SPC : TH0_THM_NEQ_NAR
% Comments : This is a simple test problem for reasoning in/about SUMO.
% Initally the problem has been hand generated in KIF syntax in
% SigmaKEE and then automatically translated by Benzmueller's
% KIF2TH0 translator into THF syntax.
% : The translation has been applied in two modes: local and SInE.
% The local mode only translates the local assumptions and the
% query. The SInE mode additionally translates the SInE-extract
% of the loaded knowledge base (usually SUMO).
% : The examples are selected to illustrate the benefits of
% higher-order reasoning in ontology reasoning.
%------------------------------------------------------------------------------
%----The extracted Signature
thf(numbers,type,
num: $tType ).
thf(holdsDuring_THFTYPE_IiooI,type,
holdsDuring_THFTYPE_IiooI: $i > $o > $o ).
thf(lBill_THFTYPE_i,type,
lBill_THFTYPE_i: $i ).
thf(lMary_THFTYPE_i,type,
lMary_THFTYPE_i: $i ).
thf(lSue_THFTYPE_i,type,
lSue_THFTYPE_i: $i ).
thf(lYearFn_THFTYPE_IiiI,type,
lYearFn_THFTYPE_IiiI: $i > $i ).
thf(likes_THFTYPE_IiioI,type,
likes_THFTYPE_IiioI: $i > $i > $o ).
thf(n2009_THFTYPE_i,type,
n2009_THFTYPE_i: $i ).
%----The translated axioms
thf(ax,axiom,
likes_THFTYPE_IiioI @ lMary_THFTYPE_i @ lBill_THFTYPE_i ).
thf(ax_001,axiom,
( holdsDuring_THFTYPE_IiooI @ ( lYearFn_THFTYPE_IiiI @ n2009_THFTYPE_i )
@ ! [X: $i] :
( ( likes_THFTYPE_IiioI @ lMary_THFTYPE_i @ X )
=> ( likes_THFTYPE_IiioI @ lSue_THFTYPE_i @ X ) ) ) ).
thf(ax_002,axiom,
! [P: $o,Y: $i] :
( P
=> ( holdsDuring_THFTYPE_IiooI @ Y @ P ) ) ).
%----The translated conjectures
thf(con,conjecture,
? [X: $i,Y: $i] : ( holdsDuring_THFTYPE_IiooI @ ( lYearFn_THFTYPE_IiiI @ Y ) @ ( likes_THFTYPE_IiioI @ lSue_THFTYPE_i @ X ) ) ).
%------------------------------------------------------------------------------