TPTP Problem File: CSR141^3.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : CSR141^3 : TPTP v9.0.0. Released v4.1.0.
% Domain : Commonsense Reasoning
% Problem : Reiner and MariaPaola are not connected at the CADE meeting
% Version : Especial > Reduced > Especial.
% English : CADE_BM is a Meeting. One agent of this meeting is MariaPaola and
% one is Reiner. It holds that both agents are not connected during
% the meeting.
% Refs : [Ben10] Benzmueller (2010), Email to Geoff Sutcliffe
% Source : [Ben10]
% Names : re_1.tq_SUMO_local [Ben10]
% Status : CounterSatisfiable
% Rating : 0.00 v6.2.0, 0.67 v6.0.0, 0.00 v5.4.0, 0.67 v5.0.0, 0.00 v4.1.0
% Syntax : Number of formulae : 15 ( 3 unt; 10 typ; 0 def)
% Number of atoms : 8 ( 0 equ; 1 cnn)
% Maximal formula atoms : 3 ( 1 avg)
% Number of connectives : 16 ( 1 ~; 0 |; 0 &; 15 @)
% ( 0 <=>; 0 =>; 0 <=; 0 <~>)
% Maximal formula depth : 5 ( 4 avg)
% Number of types : 3 ( 1 usr)
% Number of type conns : 9 ( 9 >; 0 *; 0 +; 0 <<)
% Number of symbols : 11 ( 9 usr; 6 con; 0-2 aty)
% Number of variables : 0 ( 0 ^; 0 !; 0 ?; 0 :)
% SPC : TH0_CSA_NEQ_NAR
% Comments : This is a simple test problem for reasoning in/about SUMO.
% Initally the problem has been hand generated in KIF syntax in
% SigmaKEE and then automatically translated by Benzmueller's
% KIF2TH0 translator into THF syntax.
% : The translation has been applied in three modes: handselected,
% SInE, and local. The local mode only translates the local
% assumptions and the query. The SInE mode additionally translates
% the SInE extract of the loaded knowledge base (usually SUMO). The
% handselected mode contains a hand-selected relevant axioms.
% : The examples are selected to illustrate the benefits of
% higher-order reasoning in ontology reasoning.
%------------------------------------------------------------------------------
%----The extracted signature
thf(numbers,type,
num: $tType ).
thf(agent_THFTYPE_IiioI,type,
agent_THFTYPE_IiioI: $i > $i > $o ).
thf(connected_THFTYPE_IiioI,type,
connected_THFTYPE_IiioI: $i > $i > $o ).
thf(holdsDuring_THFTYPE_IiooI,type,
holdsDuring_THFTYPE_IiooI: $i > $o > $o ).
thf(instance_THFTYPE_IiioI,type,
instance_THFTYPE_IiioI: $i > $i > $o ).
thf(lCADE_BM_THFTYPE_i,type,
lCADE_BM_THFTYPE_i: $i ).
thf(lMariaPaola_THFTYPE_i,type,
lMariaPaola_THFTYPE_i: $i ).
thf(lMeeting_THFTYPE_i,type,
lMeeting_THFTYPE_i: $i ).
thf(lReiner_THFTYPE_i,type,
lReiner_THFTYPE_i: $i ).
thf(lWhenFn_THFTYPE_IiiI,type,
lWhenFn_THFTYPE_IiiI: $i > $i ).
%----The translated axioms
thf(ax,axiom,
agent_THFTYPE_IiioI @ lCADE_BM_THFTYPE_i @ lReiner_THFTYPE_i ).
thf(ax_001,axiom,
agent_THFTYPE_IiioI @ lCADE_BM_THFTYPE_i @ lMariaPaola_THFTYPE_i ).
thf(ax_002,axiom,
instance_THFTYPE_IiioI @ lCADE_BM_THFTYPE_i @ lMeeting_THFTYPE_i ).
thf(ax_003,axiom,
holdsDuring_THFTYPE_IiooI @ ( lWhenFn_THFTYPE_IiiI @ lCADE_BM_THFTYPE_i ) @ $true ).
%----The translated conjectures
thf(con,conjecture,
holdsDuring_THFTYPE_IiooI @ ( lWhenFn_THFTYPE_IiiI @ lCADE_BM_THFTYPE_i ) @ ( (~) @ ( connected_THFTYPE_IiioI @ lMariaPaola_THFTYPE_i @ lReiner_THFTYPE_i ) ) ).
%------------------------------------------------------------------------------