TPTP Problem File: CSR135^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : CSR135^1 : TPTP v9.0.0. Released v4.1.0.
% Domain : Commonsense Reasoning
% Problem : What's a common feeling of Sue and Mary to Bill?
% Version : Especial.
% English : Does there exists a relation ?R that holds between Sue and Bill
% as well as between Mary and Bill?
% Refs : [Ben10] Benzmueller (2010), Email to Geoff Sutcliffe
% Source : [Ben10]
% Names : rv_1.tq_SUMO_local [Ben10]
% Status : Theorem
% Rating : 0.12 v9.0.0, 0.08 v8.2.0, 0.09 v8.1.0, 0.17 v7.4.0, 0.11 v7.3.0, 0.10 v7.2.0, 0.12 v7.1.0, 0.14 v7.0.0, 0.12 v6.4.0, 0.14 v6.3.0, 0.17 v6.1.0, 0.33 v6.0.0, 0.00 v5.3.0, 0.25 v5.2.0, 0.00 v4.1.0
% Syntax : Number of formulae : 18 ( 7 unt; 9 typ; 0 def)
% Number of atoms : 9 ( 0 equ; 1 cnn)
% Maximal formula atoms : 2 ( 1 avg)
% Number of connectives : 23 ( 1 ~; 0 |; 1 &; 21 @)
% ( 0 <=>; 0 =>; 0 <=; 0 <~>)
% Maximal formula depth : 5 ( 3 avg)
% Number of types : 3 ( 1 usr)
% Number of type conns : 6 ( 6 >; 0 *; 0 +; 0 <<)
% Number of symbols : 9 ( 8 usr; 7 con; 0-2 aty)
% Number of variables : 1 ( 0 ^; 0 !; 1 ?; 1 :)
% SPC : TH0_THM_NEQ_NAR
% Comments : This is a simple test problem for reasoning in/about SUMO.
% Initally the problem has been hand generated in KIF syntax in
% SigmaKEE and then automatically translated by Benzmueller's
% KIF2TH0 translator into THF syntax.
% : The translation has been applied in two modes: local and SInE.
% The local mode only translates the local assumptions and the
% query. The SInE mode additionally translates the SInE-extract
% of the loaded knowledge base (usually SUMO).
% : The examples are selected to illustrate the benefits of
% higher-order reasoning in ontology reasoning.
%------------------------------------------------------------------------------
%----The extracted signature
thf(numbers,type,
num: $tType ).
thf(lAnna_THFTYPE_i,type,
lAnna_THFTYPE_i: $i ).
thf(lBen_THFTYPE_i,type,
lBen_THFTYPE_i: $i ).
thf(lBill_THFTYPE_i,type,
lBill_THFTYPE_i: $i ).
thf(lBob_THFTYPE_i,type,
lBob_THFTYPE_i: $i ).
thf(lMary_THFTYPE_i,type,
lMary_THFTYPE_i: $i ).
thf(lSue_THFTYPE_i,type,
lSue_THFTYPE_i: $i ).
thf(likes_THFTYPE_IiioI,type,
likes_THFTYPE_IiioI: $i > $i > $o ).
thf(parent_THFTYPE_IiioI,type,
parent_THFTYPE_IiioI: $i > $i > $o ).
%----The translated axioms
thf(ax,axiom,
likes_THFTYPE_IiioI @ lSue_THFTYPE_i @ lBill_THFTYPE_i ).
thf(ax_001,axiom,
(~) @ ( likes_THFTYPE_IiioI @ lSue_THFTYPE_i @ lMary_THFTYPE_i ) ).
thf(ax_002,axiom,
likes_THFTYPE_IiioI @ lMary_THFTYPE_i @ lBill_THFTYPE_i ).
thf(ax_003,axiom,
parent_THFTYPE_IiioI @ lMary_THFTYPE_i @ lBen_THFTYPE_i ).
thf(ax_004,axiom,
parent_THFTYPE_IiioI @ lSue_THFTYPE_i @ lBen_THFTYPE_i ).
thf(ax_005,axiom,
likes_THFTYPE_IiioI @ lBob_THFTYPE_i @ lBill_THFTYPE_i ).
thf(ax_006,axiom,
parent_THFTYPE_IiioI @ lSue_THFTYPE_i @ lAnna_THFTYPE_i ).
thf(ax_007,axiom,
parent_THFTYPE_IiioI @ lMary_THFTYPE_i @ lAnna_THFTYPE_i ).
%----The translated conjecture
thf(con,conjecture,
? [R: $i > $i > $o] :
( ( R @ lSue_THFTYPE_i @ lBill_THFTYPE_i )
& ( R @ lMary_THFTYPE_i @ lBill_THFTYPE_i ) ) ).
%------------------------------------------------------------------------------