TPTP Problem File: CSR123^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : CSR123^1 : TPTP v9.0.0. Released v4.1.0.
% Domain : Commonsense Reasoning
% Problem : What does Sue feel?
% Version : Especial.
% English : Mary likes Bill and Sue likes Bill. During 2009 Sue did not like
% Ben. Are there a relation ?P and persons ?X and ?Y, so that
% during the year 2009 ?P holds for Sue and ?X but ?P does not hold
% for Sue and ?Y.
% Refs : [Ben10] Benzmueller (2010), Email to Geoff Sutcliffe
% Source : [Ben10]
% Names : ef_5.tq_SUMO_local [Ben10]
% Status : Theorem
% Rating : 0.12 v9.0.0, 0.08 v8.2.0, 0.09 v8.1.0, 0.17 v7.4.0, 0.11 v7.3.0, 0.10 v7.2.0, 0.12 v7.1.0, 0.14 v7.0.0, 0.12 v6.4.0, 0.14 v6.3.0, 0.17 v6.1.0, 0.50 v6.0.0, 0.17 v5.5.0, 0.20 v5.4.0, 0.25 v5.3.0, 0.50 v5.1.0, 0.75 v4.1.0
% Syntax : Number of formulae : 13 ( 2 unt; 9 typ; 0 def)
% Number of atoms : 7 ( 0 equ; 2 cnn)
% Maximal formula atoms : 3 ( 1 avg)
% Number of connectives : 21 ( 2 ~; 0 |; 1 &; 18 @)
% ( 0 <=>; 0 =>; 0 <=; 0 <~>)
% Maximal formula depth : 9 ( 5 avg)
% Number of types : 3 ( 1 usr)
% Number of type conns : 7 ( 7 >; 0 *; 0 +; 0 <<)
% Number of symbols : 9 ( 8 usr; 6 con; 0-2 aty)
% Number of variables : 3 ( 0 ^; 0 !; 3 ?; 3 :)
% SPC : TH0_THM_NEQ_NAR
% Comments : This is a simple test problem for reasoning in/about SUMO.
% Initally the problem has been hand generated in KIF syntax in
% SigmaKEE and then automatically translated by Benzmueller's
% KIF2TH0 translator into THF syntax.
% : The translation has been applied in two modes: local and SInE.
% The local mode only translates the local assumptions and the
% query. The SInE mode additionally translates the SInE-extract
% of the loaded knowledge base (usually SUMO).
% : The examples are selected to illustrate the benefits of
% higher-order reasoning in ontology reasoning.
%------------------------------------------------------------------------------
%----The extracted signature
thf(numbers,type,
num: $tType ).
thf(holdsDuring_THFTYPE_IiooI,type,
holdsDuring_THFTYPE_IiooI: $i > $o > $o ).
thf(lBen_THFTYPE_i,type,
lBen_THFTYPE_i: $i ).
thf(lBill_THFTYPE_i,type,
lBill_THFTYPE_i: $i ).
thf(lMary_THFTYPE_i,type,
lMary_THFTYPE_i: $i ).
thf(lSue_THFTYPE_i,type,
lSue_THFTYPE_i: $i ).
thf(lYearFn_THFTYPE_IiiI,type,
lYearFn_THFTYPE_IiiI: $i > $i ).
thf(likes_THFTYPE_IiioI,type,
likes_THFTYPE_IiioI: $i > $i > $o ).
thf(n2009_THFTYPE_i,type,
n2009_THFTYPE_i: $i ).
%----The translated axioms
thf(ax,axiom,
likes_THFTYPE_IiioI @ lSue_THFTYPE_i @ lBill_THFTYPE_i ).
thf(ax_001,axiom,
likes_THFTYPE_IiioI @ lMary_THFTYPE_i @ lBill_THFTYPE_i ).
thf(ax_002,axiom,
holdsDuring_THFTYPE_IiooI @ ( lYearFn_THFTYPE_IiiI @ n2009_THFTYPE_i ) @ ( (~) @ ( likes_THFTYPE_IiioI @ lSue_THFTYPE_i @ lBen_THFTYPE_i ) ) ).
%----The translated conjecture
thf(con,conjecture,
? [P: $i > $i > $o,X: $i,Y: $i] :
( holdsDuring_THFTYPE_IiooI @ ( lYearFn_THFTYPE_IiiI @ n2009_THFTYPE_i )
@ ( ( P @ lSue_THFTYPE_i @ X )
& ( (~) @ ( P @ lSue_THFTYPE_i @ Y ) ) ) ) ).
%------------------------------------------------------------------------------