TPTP Problem File: CSR116+28.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : CSR116+28 : TPTP v9.0.0. Released v4.0.0.
% Domain : Commonsense Reasoning
% Problem : Who was the first black president elected in South Africa?
% Version : [Pel09] axioms.
% English :
% Refs : [Glo07] Gloeckner (2007), University of Hagen at CLEF 2007: An
% : [PW07] Pelzer & Wernhard (2007), System Description: E-KRHype
% : [FG+08] Furbach et al. (2008), LogAnswer - A Deduction-Based Q
% : [Pel09] Pelzer (2009), Email to Geoff Sutcliffe
% Source : [Pel09]
% Names : synth_qa07_010_mira_news_1818_tptp [Pel09]
% Status : Theorem
% Rating : 0.40 v9.0.0, 0.25 v8.2.0, 0.27 v8.1.0, 0.43 v7.5.0, 0.52 v7.4.0, 0.38 v7.3.0, 0.57 v7.2.0, 0.50 v7.0.0, 0.57 v6.4.0, 0.36 v6.3.0, 0.38 v6.2.0, 0.64 v6.1.0, 0.72 v6.0.0, 0.50 v5.5.0, 0.71 v5.4.0, 0.70 v5.3.0, 0.74 v5.2.0, 0.50 v5.0.0, 0.70 v4.1.0, 0.72 v4.0.1, 0.74 v4.0.0
% Syntax : Number of formulae : 10189 (10061 unt; 0 def)
% Number of atoms : 10966 ( 0 equ)
% Maximal formula atoms : 253 ( 1 avg)
% Number of connectives : 777 ( 0 ~; 18 |; 633 &)
% ( 0 <=>; 126 =>; 0 <=; 0 <~>)
% Maximal formula depth : 253 ( 1 avg)
% Maximal term depth : 5 ( 1 avg)
% Number of predicates : 88 ( 88 usr; 0 prp; 2-3 aty)
% Number of functors : 16661 (16661 usr;16660 con; 0-2 aty)
% Number of variables : 478 ( 405 !; 73 ?)
% SPC : FOF_THM_RFO_NEQ
% Comments : The different versions of this problem stem from the use of
% different text snippet retrieval modules, and different snippets
% being found. The problem tries to prove the questions from the
% snippet and the background knowledge.
%------------------------------------------------------------------------------
%----Include LogAnswer axioms
include('Axioms/CSR004+0.ax').
%------------------------------------------------------------------------------
fof(synth_qa07_010_mira_news_1818,conjecture,
? [X0,X1,X2,X3,X4,X5,X6,X7,X8,X9] :
( in(X5,X6)
& arg1(X3,X0)
& arg2(X3,X4)
& attr(X0,X1)
& attr(X0,X2)
& attr(X6,X7)
& obj(X8,X0)
& sub(X1,familiename_1_1)
& sub(X2,eigenname_1_1)
& sub(X4,X9)
& sub(X7,name_1_1)
& subr(X3,rprs_0)
& val(X1,mandela_0)
& val(X2,nelson_0)
& val(X7,s__374dafrika_0) ) ).
fof(ave07_era5_synth_qa07_010_mira_news_1818,hypothesis,
( chsp1(anschlie__337en_1_1,c0)
& attch(c17,c8)
& attr(c17,c18)
& attr(c17,c19)
& prop(c17,s__374dafrikanisch_1_1)
& sub(c17,pr__344sident_1_1)
& sub(c18,eigenname_1_1)
& val(c18,nelson_0)
& sub(c19,familiename_1_1)
& val(c19,mandela_0)
& pred(c21,tuinhuys_1_1)
& sub(c26,k__366nigin_1_1)
& sub(c277,verdienstorden_1_1)
& agt(c284,c26)
& assoc(c284,c277)
& loc(c284,c288)
& mannr(c284,c0)
& ornt(c284,c29)
& subs(c284,auszeichnen_1_1)
& in(c287,c21)
& in(c288,c8)
& sub(c29,landesvater_1_1)
& attch(c31,c26)
& attr(c31,c32)
& sub(c31,land_1_1)
& sub(c32,name_1_1)
& val(c32,s__374dafrika_0)
& loc(c8,c287)
& sub(c8,residenz__1_1)
& assoc(landesvater_1_1,land_1_1)
& sub(landesvater_1_1,an_f__374hrer_1_1)
& assoc(verdienstorden_1_1,verdienst_2_1)
& sub(verdienstorden_1_1,orden_1_1)
& sort(anschlie__337en_1_1,da)
& fact(anschlie__337en_1_1,real)
& gener(anschlie__337en_1_1,ge)
& sort(c0,tq)
& sort(c17,d)
& card(c17,int1)
& etype(c17,int0)
& fact(c17,real)
& gener(c17,sp)
& quant(c17,one)
& refer(c17,det)
& varia(c17,con)
& sort(c8,d)
& card(c8,int1)
& etype(c8,int0)
& fact(c8,real)
& gener(c8,sp)
& quant(c8,one)
& refer(c8,det)
& varia(c8,con)
& sort(c18,na)
& card(c18,int1)
& etype(c18,int0)
& fact(c18,real)
& gener(c18,sp)
& quant(c18,one)
& refer(c18,indet)
& varia(c18,varia_c)
& sort(c19,na)
& card(c19,int1)
& etype(c19,int0)
& fact(c19,real)
& gener(c19,sp)
& quant(c19,one)
& refer(c19,indet)
& varia(c19,varia_c)
& sort(s__374dafrikanisch_1_1,nq)
& sort(pr__344sident_1_1,d)
& card(pr__344sident_1_1,int1)
& etype(pr__344sident_1_1,int0)
& fact(pr__344sident_1_1,real)
& gener(pr__344sident_1_1,ge)
& quant(pr__344sident_1_1,one)
& refer(pr__344sident_1_1,refer_c)
& varia(pr__344sident_1_1,varia_c)
& sort(eigenname_1_1,na)
& card(eigenname_1_1,int1)
& etype(eigenname_1_1,int0)
& fact(eigenname_1_1,real)
& gener(eigenname_1_1,ge)
& quant(eigenname_1_1,one)
& refer(eigenname_1_1,refer_c)
& varia(eigenname_1_1,varia_c)
& sort(nelson_0,fe)
& sort(familiename_1_1,na)
& card(familiename_1_1,int1)
& etype(familiename_1_1,int0)
& fact(familiename_1_1,real)
& gener(familiename_1_1,ge)
& quant(familiename_1_1,one)
& refer(familiename_1_1,refer_c)
& varia(familiename_1_1,varia_c)
& sort(mandela_0,fe)
& sort(c21,o)
& card(c21,cons(x_constant,cons(int1,nil)))
& etype(c21,int1)
& fact(c21,real)
& gener(c21,sp)
& quant(c21,mult)
& refer(c21,indet)
& varia(c21,varia_c)
& sort(tuinhuys_1_1,o)
& card(tuinhuys_1_1,int1)
& etype(tuinhuys_1_1,int0)
& fact(tuinhuys_1_1,real)
& gener(tuinhuys_1_1,ge)
& quant(tuinhuys_1_1,one)
& refer(tuinhuys_1_1,refer_c)
& varia(tuinhuys_1_1,varia_c)
& sort(c26,d)
& card(c26,int1)
& etype(c26,int0)
& fact(c26,real)
& gener(c26,sp)
& quant(c26,one)
& refer(c26,det)
& varia(c26,con)
& sort(k__366nigin_1_1,d)
& card(k__366nigin_1_1,int1)
& etype(k__366nigin_1_1,int0)
& fact(k__366nigin_1_1,real)
& gener(k__366nigin_1_1,ge)
& quant(k__366nigin_1_1,one)
& refer(k__366nigin_1_1,refer_c)
& varia(k__366nigin_1_1,varia_c)
& sort(c277,d)
& sort(c277,io)
& card(c277,int1)
& etype(c277,int1)
& fact(c277,real)
& gener(c277,sp)
& quant(c277,one)
& refer(c277,det)
& varia(c277,con)
& sort(verdienstorden_1_1,d)
& sort(verdienstorden_1_1,io)
& card(verdienstorden_1_1,card_c)
& etype(verdienstorden_1_1,int1)
& fact(verdienstorden_1_1,real)
& gener(verdienstorden_1_1,ge)
& quant(verdienstorden_1_1,quant_c)
& refer(verdienstorden_1_1,refer_c)
& varia(verdienstorden_1_1,varia_c)
& sort(c284,da)
& fact(c284,real)
& gener(c284,sp)
& sort(c288,l)
& card(c288,int1)
& etype(c288,int0)
& fact(c288,real)
& gener(c288,sp)
& quant(c288,one)
& refer(c288,det)
& varia(c288,con)
& sort(c29,d)
& card(c29,int1)
& etype(c29,int0)
& fact(c29,real)
& gener(c29,sp)
& quant(c29,one)
& refer(c29,refer_c)
& varia(c29,varia_c)
& sort(auszeichnen_1_1,da)
& fact(auszeichnen_1_1,real)
& gener(auszeichnen_1_1,ge)
& sort(c287,l)
& card(c287,cons(x_constant,cons(int1,nil)))
& etype(c287,int1)
& fact(c287,real)
& gener(c287,sp)
& quant(c287,mult)
& refer(c287,indet)
& varia(c287,varia_c)
& sort(landesvater_1_1,d)
& card(landesvater_1_1,int1)
& etype(landesvater_1_1,int0)
& fact(landesvater_1_1,real)
& gener(landesvater_1_1,ge)
& quant(landesvater_1_1,one)
& refer(landesvater_1_1,refer_c)
& varia(landesvater_1_1,varia_c)
& sort(c31,d)
& sort(c31,io)
& card(c31,int1)
& etype(c31,int0)
& fact(c31,real)
& gener(c31,sp)
& quant(c31,one)
& refer(c31,det)
& varia(c31,con)
& sort(c32,na)
& card(c32,int1)
& etype(c32,int0)
& fact(c32,real)
& gener(c32,sp)
& quant(c32,one)
& refer(c32,indet)
& varia(c32,varia_c)
& sort(land_1_1,d)
& sort(land_1_1,io)
& card(land_1_1,int1)
& etype(land_1_1,int0)
& fact(land_1_1,real)
& gener(land_1_1,ge)
& quant(land_1_1,one)
& refer(land_1_1,refer_c)
& varia(land_1_1,varia_c)
& sort(name_1_1,na)
& card(name_1_1,int1)
& etype(name_1_1,int0)
& fact(name_1_1,real)
& gener(name_1_1,ge)
& quant(name_1_1,one)
& refer(name_1_1,refer_c)
& varia(name_1_1,varia_c)
& sort(s__374dafrika_0,fe)
& sort(residenz__1_1,d)
& card(residenz__1_1,int1)
& etype(residenz__1_1,int0)
& fact(residenz__1_1,real)
& gener(residenz__1_1,ge)
& quant(residenz__1_1,one)
& refer(residenz__1_1,refer_c)
& varia(residenz__1_1,varia_c)
& sort(an_f__374hrer_1_1,d)
& card(an_f__374hrer_1_1,int1)
& etype(an_f__374hrer_1_1,int0)
& fact(an_f__374hrer_1_1,real)
& gener(an_f__374hrer_1_1,ge)
& quant(an_f__374hrer_1_1,one)
& refer(an_f__374hrer_1_1,refer_c)
& varia(an_f__374hrer_1_1,varia_c)
& sort(verdienst_2_1,as)
& sort(verdienst_2_1,io)
& card(verdienst_2_1,int1)
& etype(verdienst_2_1,int0)
& fact(verdienst_2_1,real)
& gener(verdienst_2_1,ge)
& quant(verdienst_2_1,one)
& refer(verdienst_2_1,refer_c)
& varia(verdienst_2_1,varia_c)
& sort(orden_1_1,d)
& sort(orden_1_1,io)
& card(orden_1_1,card_c)
& etype(orden_1_1,int1)
& fact(orden_1_1,real)
& gener(orden_1_1,ge)
& quant(orden_1_1,quant_c)
& refer(orden_1_1,refer_c)
& varia(orden_1_1,varia_c) ) ).
%------------------------------------------------------------------------------