TPTP Problem File: CSR116+24.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : CSR116+24 : TPTP v9.0.0. Released v4.0.0.
% Domain : Commonsense Reasoning
% Problem : Who was the first black president elected in South Africa?
% Version : [Pel09] axioms.
% English :
% Refs : [Glo07] Gloeckner (2007), University of Hagen at CLEF 2007: An
% : [PW07] Pelzer & Wernhard (2007), System Description: E-KRHype
% : [FG+08] Furbach et al. (2008), LogAnswer - A Deduction-Based Q
% : [Pel09] Pelzer (2009), Email to Geoff Sutcliffe
% Source : [Pel09]
% Names : synth_qa07_010_mira_news_1788_tptp [Pel09]
% Status : Theorem
% Rating : 0.47 v9.0.0, 0.19 v8.2.0, 0.20 v8.1.0, 0.36 v7.5.0, 0.52 v7.4.0, 0.38 v7.3.0, 0.57 v7.2.0, 0.50 v7.0.0, 0.43 v6.4.0, 0.36 v6.3.0, 0.38 v6.2.0, 0.64 v6.1.0, 0.68 v6.0.0, 0.50 v5.5.0, 0.71 v5.4.0, 0.70 v5.2.0, 0.50 v5.0.0, 0.60 v4.1.0, 0.67 v4.0.1, 0.74 v4.0.0
% Syntax : Number of formulae : 10189 (10061 unt; 0 def)
% Number of atoms : 10846 ( 0 equ)
% Maximal formula atoms : 133 ( 1 avg)
% Number of connectives : 657 ( 0 ~; 18 |; 513 &)
% ( 0 <=>; 126 =>; 0 <=; 0 <~>)
% Maximal formula depth : 133 ( 1 avg)
% Maximal term depth : 5 ( 1 avg)
% Number of predicates : 86 ( 86 usr; 0 prp; 2-3 aty)
% Number of functors : 16651 (16651 usr;16650 con; 0-2 aty)
% Number of variables : 478 ( 405 !; 73 ?)
% SPC : FOF_THM_RFO_NEQ
% Comments : The different versions of this problem stem from the use of
% different text snippet retrieval modules, and different snippets
% being found. The problem tries to prove the questions from the
% snippet and the background knowledge.
%------------------------------------------------------------------------------
%----Include LogAnswer axioms
include('Axioms/CSR004+0.ax').
%------------------------------------------------------------------------------
fof(synth_qa07_010_mira_news_1788,conjecture,
? [X0,X1,X2,X3,X4,X5,X6,X7,X8,X9] :
( in(X5,X6)
& arg1(X3,X0)
& arg2(X3,X4)
& attr(X0,X1)
& attr(X0,X2)
& attr(X6,X7)
& obj(X8,X0)
& sub(X1,familiename_1_1)
& sub(X2,eigenname_1_1)
& sub(X4,X9)
& sub(X7,name_1_1)
& subr(X3,rprs_0)
& val(X1,mandela_0)
& val(X2,nelson_0)
& val(X7,s__374dafrika_0) ) ).
fof(ave07_era5_synth_qa07_010_mira_news_1788,hypothesis,
( origl(c15,c323)
& sub(c15,an_f__374hrer_1_1)
& sub(c15,c15)
& sub(c15,hirte_1_1)
& arg1(c19,c15)
& arg2(c19,c15)
& subr(c19,sub_0)
& pred(c307,autobiographie_1_1)
& attch(c316,c307)
& attr(c316,c317)
& attr(c316,c318)
& prop(c316,s__374dafrikanisch_1_1)
& sub(c316,pr__344sident_1_1)
& sub(c317,eigenname_1_1)
& val(c317,nelson_0)
& sub(c318,familiename_1_1)
& val(c318,mandela_0)
& flp(c323,c307)
& agt(c324,c15)
& subs(c324,f__374hren_1_1)
& sort(c15,d)
& card(c15,int1)
& etype(c15,int0)
& fact(c15,real)
& gener(c15,sp)
& quant(c15,one)
& refer(c15,indet)
& varia(c15,varia_c)
& sort(c323,l)
& card(c323,cons(x_constant,cons(int1,nil)))
& etype(c323,int1)
& fact(c323,real)
& gener(c323,sp)
& quant(c323,mult)
& refer(c323,det)
& varia(c323,con)
& sort(an_f__374hrer_1_1,d)
& card(an_f__374hrer_1_1,int1)
& etype(an_f__374hrer_1_1,int0)
& fact(an_f__374hrer_1_1,real)
& gener(an_f__374hrer_1_1,ge)
& quant(an_f__374hrer_1_1,one)
& refer(an_f__374hrer_1_1,refer_c)
& varia(an_f__374hrer_1_1,varia_c)
& sort(hirte_1_1,d)
& card(hirte_1_1,int1)
& etype(hirte_1_1,int0)
& fact(hirte_1_1,real)
& gener(hirte_1_1,ge)
& quant(hirte_1_1,one)
& refer(hirte_1_1,refer_c)
& varia(hirte_1_1,varia_c)
& sort(c19,st)
& fact(c19,real)
& gener(c19,sp)
& sort(sub_0,st)
& fact(sub_0,real)
& gener(sub_0,gener_c)
& sort(c307,d)
& sort(c307,io)
& card(c307,cons(x_constant,cons(int1,nil)))
& etype(c307,int1)
& fact(c307,real)
& gener(c307,sp)
& quant(c307,mult)
& refer(c307,det)
& varia(c307,con)
& sort(autobiographie_1_1,d)
& sort(autobiographie_1_1,io)
& card(autobiographie_1_1,int1)
& etype(autobiographie_1_1,int0)
& fact(autobiographie_1_1,real)
& gener(autobiographie_1_1,ge)
& quant(autobiographie_1_1,one)
& refer(autobiographie_1_1,refer_c)
& varia(autobiographie_1_1,varia_c)
& sort(c316,d)
& card(c316,int1)
& etype(c316,int0)
& fact(c316,real)
& gener(c316,sp)
& quant(c316,one)
& refer(c316,det)
& varia(c316,con)
& sort(c317,na)
& card(c317,int1)
& etype(c317,int0)
& fact(c317,real)
& gener(c317,sp)
& quant(c317,one)
& refer(c317,indet)
& varia(c317,varia_c)
& sort(c318,na)
& card(c318,int1)
& etype(c318,int0)
& fact(c318,real)
& gener(c318,sp)
& quant(c318,one)
& refer(c318,indet)
& varia(c318,varia_c)
& sort(s__374dafrikanisch_1_1,nq)
& sort(pr__344sident_1_1,d)
& card(pr__344sident_1_1,int1)
& etype(pr__344sident_1_1,int0)
& fact(pr__344sident_1_1,real)
& gener(pr__344sident_1_1,ge)
& quant(pr__344sident_1_1,one)
& refer(pr__344sident_1_1,refer_c)
& varia(pr__344sident_1_1,varia_c)
& sort(eigenname_1_1,na)
& card(eigenname_1_1,int1)
& etype(eigenname_1_1,int0)
& fact(eigenname_1_1,real)
& gener(eigenname_1_1,ge)
& quant(eigenname_1_1,one)
& refer(eigenname_1_1,refer_c)
& varia(eigenname_1_1,varia_c)
& sort(nelson_0,fe)
& sort(familiename_1_1,na)
& card(familiename_1_1,int1)
& etype(familiename_1_1,int0)
& fact(familiename_1_1,real)
& gener(familiename_1_1,ge)
& quant(familiename_1_1,one)
& refer(familiename_1_1,refer_c)
& varia(familiename_1_1,varia_c)
& sort(mandela_0,fe)
& sort(c324,da)
& fact(c324,real)
& gener(c324,sp)
& sort(f__374hren_1_1,da)
& fact(f__374hren_1_1,real)
& gener(f__374hren_1_1,ge) ) ).
%------------------------------------------------------------------------------