TPTP Problem File: CSR115+61.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : CSR115+61 : TPTP v9.0.0. Released v4.0.0.
% Domain : Commonsense Reasoning
% Problem : Which British company was taken over by BMW in 1994?
% Version : [Pel09] axioms.
% English :
% Refs : [Glo07] Gloeckner (2007), University of Hagen at CLEF 2007: An
% : [PW07] Pelzer & Wernhard (2007), System Description: E-KRHype
% : [FG+08] Furbach et al. (2008), LogAnswer - A Deduction-Based Q
% : [Pel09] Pelzer (2009), Email to Geoff Sutcliffe
% Source : [Pel09]
% Names : synth_qa07_007_mira_news_1334_tptp [Pel09]
% Status : Theorem
% Rating : 0.40 v9.0.0, 0.25 v8.2.0, 0.27 v8.1.0, 0.29 v7.5.0, 0.38 v7.4.0, 0.31 v7.3.0, 0.29 v7.2.0, 0.17 v7.1.0, 0.25 v7.0.0, 0.29 v6.4.0, 0.21 v6.3.0, 0.31 v6.2.0, 0.45 v6.1.0, 0.60 v6.0.0, 0.50 v5.5.0, 0.54 v5.4.0, 0.52 v5.3.0, 0.61 v5.2.0, 0.43 v5.0.0, 0.45 v4.1.0, 0.50 v4.0.1, 0.53 v4.0.0
% Syntax : Number of formulae : 10189 (10061 unt; 0 def)
% Number of atoms : 10854 ( 0 equ)
% Maximal formula atoms : 147 ( 1 avg)
% Number of connectives : 665 ( 0 ~; 18 |; 521 &)
% ( 0 <=>; 126 =>; 0 <=; 0 <~>)
% Maximal formula depth : 147 ( 1 avg)
% Maximal term depth : 5 ( 1 avg)
% Number of predicates : 88 ( 88 usr; 0 prp; 2-3 aty)
% Number of functors : 16655 (16655 usr;16654 con; 0-2 aty)
% Number of variables : 475 ( 405 !; 70 ?)
% SPC : FOF_THM_RFO_NEQ
% Comments : The different versions of this problem stem from the use of
% different text snippet retrieval modules, and different snippets
% being found. The problem tries to prove the questions from the
% snippet and the background knowledge.
%------------------------------------------------------------------------------
%----Include LogAnswer axioms
include('Axioms/CSR004+0.ax').
%------------------------------------------------------------------------------
fof(synth_qa07_007_mira_news_1334,conjecture,
? [X0,X1,X2,X3,X4,X5,X6] :
( attr(X0,X1)
& attr(X3,X2)
& attr(X5,X6)
& obj(X4,X0)
& sub(X1,name_1_1)
& sub(X0,firma_1_1)
& sub(X2,name_1_1)
& val(X1,bmw_0)
& val(X2,bmw_0) ) ).
fof(ave07_era5_synth_qa07_007_mira_news_1334,hypothesis,
( attr(c11682,c11683)
& sub(c11682,firma_1_1)
& sub(c11683,name_1_1)
& val(c11683,bmw_0)
& prop(c11687,britisch__1_1)
& sub(c11687,marke_1_1)
& agt(c11873,c11965)
& benf(c11873,c11682)
& obj(c11873,c11687)
& subs(c11873,nehmen_1_7)
& attr(c11965,c11966)
& sub(c11965,firma_1_1)
& sub(c11966,name_1_1)
& val(c11966,rover_0)
& modl(c11981,so_1_1)
& scar(c11981,c11682)
& semrel(c11981,c11873)
& subs(c11981,befinden_1_2)
& temp(c11981,bald_1_1)
& temp(c11981,future_0)
& temp(c11981,re_1_1)
& modl(c5,so_1_1)
& scar(c5,c10386)
& subs(c5,befinden_1_2)
& temp(c5,c11873)
& sort(c11682,d)
& sort(c11682,io)
& card(c11682,int1)
& etype(c11682,int0)
& fact(c11682,real)
& gener(c11682,sp)
& quant(c11682,one)
& refer(c11682,det)
& varia(c11682,con)
& sort(c11683,na)
& card(c11683,int1)
& etype(c11683,int0)
& fact(c11683,real)
& gener(c11683,sp)
& quant(c11683,one)
& refer(c11683,indet)
& varia(c11683,varia_c)
& sort(firma_1_1,d)
& sort(firma_1_1,io)
& card(firma_1_1,int1)
& etype(firma_1_1,int0)
& fact(firma_1_1,real)
& gener(firma_1_1,ge)
& quant(firma_1_1,one)
& refer(firma_1_1,refer_c)
& varia(firma_1_1,varia_c)
& sort(name_1_1,na)
& card(name_1_1,int1)
& etype(name_1_1,int0)
& fact(name_1_1,real)
& gener(name_1_1,ge)
& quant(name_1_1,one)
& refer(name_1_1,refer_c)
& varia(name_1_1,varia_c)
& sort(bmw_0,fe)
& sort(c11687,io)
& sort(c11687,oa)
& card(c11687,int1)
& etype(c11687,int0)
& fact(c11687,real)
& gener(c11687,sp)
& quant(c11687,one)
& refer(c11687,det)
& varia(c11687,con)
& sort(britisch__1_1,nq)
& sort(marke_1_1,io)
& sort(marke_1_1,oa)
& card(marke_1_1,int1)
& etype(marke_1_1,int0)
& fact(marke_1_1,real)
& gener(marke_1_1,ge)
& quant(marke_1_1,one)
& refer(marke_1_1,refer_c)
& varia(marke_1_1,varia_c)
& sort(c11873,da)
& fact(c11873,real)
& gener(c11873,sp)
& sort(c11965,d)
& sort(c11965,io)
& card(c11965,int1)
& etype(c11965,int0)
& fact(c11965,real)
& gener(c11965,sp)
& quant(c11965,one)
& refer(c11965,det)
& varia(c11965,con)
& sort(nehmen_1_7,da)
& fact(nehmen_1_7,real)
& gener(nehmen_1_7,ge)
& sort(c11966,na)
& card(c11966,int1)
& etype(c11966,int0)
& fact(c11966,real)
& gener(c11966,sp)
& quant(c11966,one)
& refer(c11966,indet)
& varia(c11966,varia_c)
& sort(rover_0,fe)
& sort(c11981,st)
& fact(c11981,real)
& gener(c11981,sp)
& sort(so_1_1,md)
& fact(so_1_1,real)
& gener(so_1_1,gener_c)
& sort(befinden_1_2,st)
& fact(befinden_1_2,real)
& gener(befinden_1_2,ge)
& sort(bald_1_1,t)
& card(bald_1_1,int1)
& etype(bald_1_1,int0)
& fact(bald_1_1,real)
& gener(bald_1_1,sp)
& quant(bald_1_1,one)
& refer(bald_1_1,refer_c)
& varia(bald_1_1,varia_c)
& sort(future_0,t)
& card(future_0,int1)
& etype(future_0,int0)
& fact(future_0,real)
& gener(future_0,sp)
& quant(future_0,one)
& refer(future_0,refer_c)
& varia(future_0,varia_c)
& sort(re_1_1,t)
& card(re_1_1,int1)
& etype(re_1_1,int0)
& fact(re_1_1,real)
& gener(re_1_1,sp)
& quant(re_1_1,one)
& refer(re_1_1,refer_c)
& varia(re_1_1,varia_c)
& sort(c5,st)
& fact(c5,real)
& gener(c5,sp)
& sort(c10386,co)
& card(c10386,card_c)
& etype(c10386,etype_c)
& fact(c10386,real)
& gener(c10386,sp)
& quant(c10386,quant_c)
& refer(c10386,det)
& varia(c10386,varia_c) ) ).
%------------------------------------------------------------------------------