TPTP Problem File: CSR101+6.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : CSR101+6 : TPTP v9.0.0. Bugfixed v7.3.0.
% Domain : Commonsense Reasoning
% Problem : An "intensional" query requiring circular subclass reasoning
% Version : Especial.
% English :
% Refs : [NP01] Niles & Pease (2001), Towards A Standard Upper Ontology
% : [Sie07] Siegel (2007), Email to G. Sutcliffe
% Source : [Sie07]
% Names : TQG32
% Status : ContradictoryAxioms
% Rating : 0.70 v9.0.0, 0.69 v8.2.0, 0.67 v8.1.0, 0.72 v7.5.0, 0.75 v7.4.0, 0.29 v7.3.0
% Syntax : Number of formulae : 55596 (40669 unt; 0 def)
% Number of atoms : 150988 (14168 equ)
% Maximal formula atoms : 29 ( 2 avg)
% Number of connectives : 99398 (4006 ~; 275 |;60337 &)
% ( 249 <=>;34531 =>; 0 <=; 0 <~>)
% Maximal formula depth : 33 ( 3 avg)
% Maximal term depth : 7 ( 1 avg)
% Number of predicates : 1201 (1200 usr; 0 prp; 1-8 aty)
% Number of functors : 33069 (32452 usr;32841 con; 0-8 aty)
% Number of variables : 56935 (49182 !;7753 ?)
% SPC : FOF_CAX_RFO_SEQ
% Comments :
% Bugfixes : v4.0.1 - Bugfixes in CSR003 axiom files.
% : v4.1.0 - Bugfixes in CSR003 axiom files.
% : v5.3.0 - Bugfixes in CSR003 axiom files.
% : v5.4.0 - Bugfixes in CSR003 axiom files.
% : v7.3.0 - Bugfixes in CSR003 axiom files.
%------------------------------------------------------------------------------
%----Include axioms from all Sigma constituents
include('Axioms/CSR003+2.ax').
%------------------------------------------------------------------------------
fof(local_1,axiom,
s__instance(s__Class32_1,s__Class) ).
fof(local_2,axiom,
s__instance(s__Class32_2,s__Class) ).
fof(local_3,axiom,
s__instance(s__Class32_3,s__Class) ).
fof(local_4,axiom,
s__subclass(s__Class32_1,s__Animal) ).
fof(local_5,axiom,
s__subclass(s__Class32_2,s__Animal) ).
fof(local_6,axiom,
s__subclass(s__Class32_3,s__Animal) ).
fof(local_7,axiom,
s__subclass(s__Class32_1,s__Class32_2) ).
fof(local_8,axiom,
s__subclass(s__Class32_2,s__Class32_3) ).
fof(local_9,axiom,
s__subclass(s__Class32_3,s__Class32_1) ).
fof(prove_from_ALL,conjecture,
! [V_X] :
( s__instance(V_X,s__Class32_2)
=> s__instance(V_X,s__Class32_1) ) ).
%------------------------------------------------------------------------------