TPTP Problem File: CSR084+3.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : CSR084+3 : TPTP v9.0.0. Bugfixed v7.3.0.
% Domain : Commonsense Reasoning
% Problem : Case elimination with multiple rules
% Version : Especial > Augmented > Especial.
% English :
% Refs : [NP01] Niles & Pease (2001), Towards A Standard Upper Ontology
% : [Sie07] Siegel (2007), Email to G. Sutcliffe
% Source : [Sie07]
% Names : TQG10
% Status : ContradictoryAxioms
% Rating : 0.82 v9.0.0, 0.83 v8.2.0, 0.89 v7.5.0, 0.84 v7.4.0, 0.43 v7.3.0
% Syntax : Number of formulae : 145109 (130178 unt; 0 def)
% Number of atoms : 240518 (14168 equ)
% Maximal formula atoms : 29 ( 1 avg)
% Number of connectives : 99419 (4010 ~; 275 |;60349 &)
% ( 249 <=>;34536 =>; 0 <=; 0 <~>)
% Maximal formula depth : 33 ( 2 avg)
% Maximal term depth : 7 ( 1 avg)
% Number of predicates : 1201 (1200 usr; 0 prp; 1-8 aty)
% Number of functors : 33068 (32451 usr;32840 con; 0-8 aty)
% Number of variables : 56944 (49189 !;7755 ?)
% SPC : FOF_CAX_RFO_SEQ
% Comments : This version includes the cache axioms.
% Bugfixes : v3.4.1 - Bugfixes in CSR003+*.ax
% : v3.4.2 - Bugfixes in CSR003+1.ax, CSR003+3.ax, CSR003+10.ax
% : v3.5.0 - Bugfixes in CSR003+1.ax
% : v4.0.0 - Bugfixes in CSR003 axiom files.
% : v4.0.1 - Bugfixes in CSR003 axiom files.
% : v4.1.0 - Bugfixes in CSR003 axiom files.
% : v5.3.0 - Bugfixes in CSR003 axiom files.
% : v5.4.0 - Bugfixes in CSR003 axiom files.
% : v7.3.0 - Bugfixes in CSR003 axiom files.
%------------------------------------------------------------------------------
%----Include axioms from all Sigma constituents
include('Axioms/CSR003+2.ax').
%----Include cache axioms for all Sigma constituents
include('Axioms/CSR003+5.ax').
%------------------------------------------------------------------------------
fof(local_1,axiom,
! [V_A] :
( s__instance(V_A,s__Object)
=> ( ( s__instance(V_A,s__Animal)
& ~ ? [V_PART] :
( s__instance(V_PART,s__Object)
& s__instance(V_PART,s__SpinalColumn)
& s__part(V_PART,V_A) ) )
=> ~ s__instance(V_A,s__Vertebrate) ) ) ).
fof(local_2,axiom,
~ ? [V_SPINE] :
( s__instance(V_SPINE,s__Object)
& s__instance(V_SPINE,s__SpinalColumn)
& s__part(V_SPINE,s__BananaSlug10_1) ) ).
fof(local_3,axiom,
s__partition_3(s__Animal,s__Vertebrate,s__Invertebrate) ).
fof(local_4,axiom,
! [V_SUPER,V_SUB1,V_SUB2] :
( ( s__instance(V_SUPER,s__Class)
& s__instance(V_SUB1,s__Class)
& s__instance(V_SUB2,s__Class) )
=> ( s__partition_3(V_SUPER,V_SUB1,V_SUB2)
=> s__partition_3(V_SUPER,V_SUB2,V_SUB1) ) ) ).
fof(local_5,axiom,
! [V_SUPER,V_SUB1,V_SUB2,V_INST] :
( ( s__instance(V_SUPER,s__Class)
& s__instance(V_SUB1,s__Class)
& s__instance(V_SUB2,s__Class) )
=> ( ( s__partition_3(V_SUPER,V_SUB1,V_SUB2)
& s__instance(V_INST,V_SUPER)
& ~ s__instance(V_INST,V_SUB1) )
=> s__instance(V_INST,V_SUB2) ) ) ).
fof(local_6,axiom,
s__instance(s__BananaSlug10_1,s__Animal) ).
fof(local_7,axiom,
( s__instance(s__BodyPart10_1,s__BodyPart)
& s__component(s__BodyPart10_1,s__BananaSlug10_1) ) ).
fof(prove_from_ALL,conjecture,
s__instance(s__BananaSlug10_1,s__Invertebrate) ).
%------------------------------------------------------------------------------