TPTP Problem File: CSR076+7.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : CSR076+7 : TPTP v9.0.0. Bugfixed v7.3.0.
% Domain : Commonsense Reasoning
% Problem : Relation subsumption
% Version : Especial.
% Theorem formulation : Existentially quantified, as a question.
% English :
% Refs : [NP01] Niles & Pease (2001), Towards A Standard Upper Ontology
% : [Sie07] Siegel (2007), Email to G. Sutcliffe
% Source : [Sie07]
% Names : TQG2
% Status : ContradictoryAxioms
% Rating : 0.94 v8.2.0, 0.89 v8.1.0, 0.92 v7.5.0, 0.91 v7.4.0, 0.57 v7.3.0
% Syntax : Number of formulae : 55594 (40667 unt; 0 def)
% Number of atoms : 150990 (14168 equ)
% Maximal formula atoms : 29 ( 2 avg)
% Number of connectives : 99402 (4006 ~; 275 |;60340 &)
% ( 249 <=>;34532 =>; 0 <=; 0 <~>)
% Maximal formula depth : 33 ( 3 avg)
% Maximal term depth : 7 ( 1 avg)
% Number of predicates : 1201 (1200 usr; 0 prp; 1-8 aty)
% Number of functors : 33070 (32453 usr;32842 con; 0-8 aty)
% Number of variables : 56938 (49184 !;7754 ?)
% SPC : FOF_CAX_RFO_SEQ
% Comments :
% Bugfixes : v5.3.0 - Bugfixes in CSR003 axiom files.
% : v5.4.0 - Bugfixes in CSR003 axiom files.
% : v7.3.0 - Bugfixes in CSR003 axiom files.
%------------------------------------------------------------------------------
%----Include axioms from all Sigma constituents
include('Axioms/CSR003+2.ax').
%------------------------------------------------------------------------------
fof(local_1,axiom,
s__instance(s__TheKB2_1,s__ComputerProgram) ).
fof(local_2,axiom,
s__instance(s__Inconsistent,s__Attribute) ).
fof(local_3,axiom,
! [V_ATTR1,V_ATTR2,V_X] :
( ( s__instance(V_ATTR1,s__Attribute)
& s__instance(V_ATTR2,s__Attribute) )
=> ( ( s__contraryAttribute_2(V_ATTR1,V_ATTR2)
& s__property(V_X,V_ATTR1)
& s__property(V_X,V_ATTR2) )
=> s__property(s__TheKB2_1,s__Inconsistent) ) ) ).
fof(local_4,axiom,
s__instance(s__Entity2_1,s__Organism) ).
fof(local_5,axiom,
s__instance(s__Entity2_2,s__Organism) ).
fof(local_6,axiom,
s__mother(s__Entity2_1,s__Entity2_2) ).
fof(local_7,axiom,
s__father(s__Entity2_1,s__Entity2_2) ).
fof(prove_from_ALL,conjecture,
? [X__s__TheKB2_1] : s__property(X__s__TheKB2_1,s__Inconsistent) ).
%------------------------------------------------------------------------------