TPTP Problem File: CSR058+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : CSR058+1 : TPTP v9.0.0. Released v3.4.0.
% Domain : Common Sense Reasoning
% Problem : Autogenerated Cyc Problem CSR058+1
% Version : Especial.
% English :
% Refs : [RS+] Reagan Smith et al., The Cyc TPTP Challenge Problem
% Source : [RS+]
% Names :
% Status : Theorem
% Rating : 0.07 v9.0.0, 0.00 v6.1.0, 0.04 v6.0.0, 0.25 v5.5.0, 0.12 v5.4.0, 0.17 v5.3.0, 0.26 v5.2.0, 0.14 v5.0.0, 0.15 v4.1.0, 0.11 v4.0.1, 0.05 v3.7.0, 0.00 v3.4.0
% Syntax : Number of formulae : 41 ( 6 unt; 0 def)
% Number of atoms : 84 ( 0 equ)
% Maximal formula atoms : 3 ( 2 avg)
% Number of connectives : 44 ( 1 ~; 0 |; 9 &)
% ( 0 <=>; 34 =>; 0 <=; 0 <~>)
% Maximal formula depth : 7 ( 4 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 20 ( 20 usr; 0 prp; 1-3 aty)
% Number of functors : 11 ( 11 usr; 10 con; 0-3 aty)
% Number of variables : 82 ( 81 !; 1 ?)
% SPC : FOF_THM_RFO_NEQ
% Comments : Autogenerated from the OpenCyc KB. Documentation can be found at
% http://opencyc.org/doc/#TPTP_Challenge_Problem_Set
% : Cyc(R) Knowledge Base Copyright(C) 1995-2007 Cycorp, Inc., Austin,
% TX, USA. All rights reserved.
% : OpenCyc Knowledge Base Copyright(C) 2001-2007 Cycorp, Inc.,
% Austin, TX, USA. All rights reserved.
%------------------------------------------------------------------------------
%$problem_series(cyc_scaling_1,[CSR025+1,CSR026+1,CSR027+1,CSR028+1,CSR029+1,CSR030+1,CSR031+1,CSR032+1,CSR033+1,CSR034+1,CSR035+1,CSR036+1,CSR037+1,CSR038+1,CSR039+1,CSR040+1,CSR041+1,CSR042+1,CSR043+1,CSR044+1,CSR045+1,CSR046+1,CSR047+1,CSR048+1,CSR049+1,CSR050+1,CSR051+1,CSR052+1,CSR053+1,CSR054+1,CSR055+1,CSR056+1,CSR057+1,CSR058+1,CSR059+1,CSR060+1,CSR061+1,CSR062+1,CSR063+1,CSR064+1,CSR065+1,CSR066+1,CSR067+1,CSR068+1,CSR069+1,CSR070+1,CSR071+1,CSR072+1,CSR073+1,CSR074+1])
%$static(cyc_scaling_1,include('Axioms/CSR002+0.ax'))
%----Empty file include('Axioms/CSR002+0.ax').
%------------------------------------------------------------------------------
% Cyc Assertion #1623378:
fof(just1,axiom,
( mtvisible(c_englishmt)
=> prettystring(f_subcollectionofwithrelationfromtypefn(c_terrorist,c_hasmembers,c_terroristgroup),s_terroristthathasbeenamemberofaterroristorganization) ) ).
% Cyc Assertion #398814:
fof(just2,axiom,
! [OBJ,COL1,COL2] :
~ ( isa(OBJ,COL1)
& isa(OBJ,COL2)
& disjointwith(COL1,COL2) ) ).
% Cyc Assertion #831913:
fof(just3,axiom,
! [SPECPRED,PRED,GENLPRED] :
( ( genlinverse(SPECPRED,PRED)
& genlinverse(PRED,GENLPRED) )
=> genlpreds(SPECPRED,GENLPRED) ) ).
% Cyc Constant #40273:
fof(just4,axiom,
! [ARG1,INS] :
( genlpreds(ARG1,INS)
=> predicate(INS) ) ).
fof(just5,axiom,
! [ARG1,INS] :
( genlpreds(ARG1,INS)
=> predicate(INS) ) ).
fof(just6,axiom,
! [INS,ARG2] :
( genlpreds(INS,ARG2)
=> predicate(INS) ) ).
fof(just7,axiom,
! [INS,ARG2] :
( genlpreds(INS,ARG2)
=> predicate(INS) ) ).
fof(just8,axiom,
! [X,Y,Z] :
( ( genlpreds(X,Y)
& genlpreds(Y,Z) )
=> genlpreds(X,Z) ) ).
fof(just9,axiom,
! [X] :
( predicate(X)
=> genlpreds(X,X) ) ).
fof(just10,axiom,
! [X] :
( predicate(X)
=> genlpreds(X,X) ) ).
% Cyc Constant #45259:
fof(just11,axiom,
! [ARG1,INS] :
( genlinverse(ARG1,INS)
=> binarypredicate(INS) ) ).
fof(just12,axiom,
! [INS,ARG2] :
( genlinverse(INS,ARG2)
=> binarypredicate(INS) ) ).
fof(just13,axiom,
! [OLD,ARG2,NEW] :
( ( genlinverse(OLD,ARG2)
& genlpreds(NEW,OLD) )
=> genlinverse(NEW,ARG2) ) ).
fof(just14,axiom,
! [ARG1,OLD,NEW] :
( ( genlinverse(ARG1,OLD)
& genlpreds(OLD,NEW) )
=> genlinverse(ARG1,NEW) ) ).
% Cyc Constant #78648:
fof(just15,axiom,
! [ARG1,INS] :
( disjointwith(ARG1,INS)
=> collection(INS) ) ).
fof(just16,axiom,
! [INS,ARG2] :
( disjointwith(INS,ARG2)
=> collection(INS) ) ).
fof(just17,axiom,
! [X,Y] :
( disjointwith(X,Y)
=> disjointwith(Y,X) ) ).
fof(just18,axiom,
! [ARG1,OLD,NEW] :
( ( disjointwith(ARG1,OLD)
& genls(NEW,OLD) )
=> disjointwith(ARG1,NEW) ) ).
fof(just19,axiom,
! [OLD,ARG2,NEW] :
( ( disjointwith(OLD,ARG2)
& genls(NEW,OLD) )
=> disjointwith(NEW,ARG2) ) ).
% Cyc Constant #72115:
fof(just20,axiom,
! [ARG1,INS] :
( isa(ARG1,INS)
=> collection(INS) ) ).
fof(just21,axiom,
! [ARG1,INS] :
( isa(ARG1,INS)
=> collection(INS) ) ).
fof(just22,axiom,
! [INS,ARG2] :
( isa(INS,ARG2)
=> thing(INS) ) ).
fof(just23,axiom,
! [INS,ARG2] :
( isa(INS,ARG2)
=> thing(INS) ) ).
fof(just24,axiom,
! [ARG1,OLD,NEW] :
( ( isa(ARG1,OLD)
& genls(OLD,NEW) )
=> isa(ARG1,NEW) ) ).
% Cyc Constant #27757:
fof(just25,axiom,
mtvisible(c_basekb) ).
% Cyc Constant #124241:
fof(just26,axiom,
! [X] :
( isa(X,c_terroristgroup)
=> terroristgroup(X) ) ).
fof(just27,axiom,
! [X] :
( terroristgroup(X)
=> isa(X,c_terroristgroup) ) ).
% Cyc Constant #87244:
fof(just28,axiom,
! [ARG1,INS] :
( hasmembers(ARG1,INS)
=> agent_generic(INS) ) ).
fof(just29,axiom,
! [INS,ARG2] :
( hasmembers(INS,ARG2)
=> organization(INS) ) ).
% Cyc Constant #65146:
fof(just30,axiom,
! [X] :
( isa(X,c_terrorist)
=> terrorist(X) ) ).
fof(just31,axiom,
! [X] :
( terrorist(X)
=> isa(X,c_terrorist) ) ).
% Cyc Constant #42488:
fof(just32,axiom,
! [ARG1,ARG2,ARG3] : natfunction(f_subcollectionofwithrelationfromtypefn(ARG1,ARG2,ARG3),c_subcollectionofwithrelationfromtypefn) ).
fof(just33,axiom,
! [ARG1,ARG2,ARG3] : natargument(f_subcollectionofwithrelationfromtypefn(ARG1,ARG2,ARG3),n_1,ARG1) ).
fof(just34,axiom,
! [ARG1,ARG2,ARG3] : natargument(f_subcollectionofwithrelationfromtypefn(ARG1,ARG2,ARG3),n_2,ARG2) ).
fof(just35,axiom,
! [ARG1,ARG2,ARG3] : natargument(f_subcollectionofwithrelationfromtypefn(ARG1,ARG2,ARG3),n_3,ARG3) ).
fof(just36,axiom,
! [ARG1,ARG2,ARG3] : collection(f_subcollectionofwithrelationfromtypefn(ARG1,ARG2,ARG3)) ).
% Cyc NART #80403:
fof(just37,axiom,
! [X] :
( isa(X,f_subcollectionofwithrelationfromtypefn(c_terrorist,c_hasmembers,c_terroristgroup))
=> subcollectionofwithrelationfromtypefnterroristhasmembersterroristgroup(X) ) ).
fof(just38,axiom,
! [X] :
( subcollectionofwithrelationfromtypefnterroristhasmembersterroristgroup(X)
=> isa(X,f_subcollectionofwithrelationfromtypefn(c_terrorist,c_hasmembers,c_terroristgroup)) ) ).
% Cyc Constant #54126:
fof(just39,axiom,
! [ARG1,INS] :
( prettystring(ARG1,INS)
=> controlcharacterfreestring(INS) ) ).
fof(just40,axiom,
! [INS,ARG2] :
( prettystring(INS,ARG2)
=> thing(INS) ) ).
fof(query58,conjecture,
? [X] :
( mtvisible(c_englishmt)
=> prettystring(f_subcollectionofwithrelationfromtypefn(c_terrorist,c_hasmembers,c_terroristgroup),X) ) ).
%------------------------------------------------------------------------------