TPTP Problem File: CSR052+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : CSR052+1 : TPTP v9.0.0. Released v3.4.0.
% Domain : Common Sense Reasoning
% Problem : Autogenerated Cyc Problem CSR052+1
% Version : Especial.
% English :
% Refs : [RS+] Reagan Smith et al., The Cyc TPTP Challenge Problem
% Source : [RS+]
% Names :
% Status : Theorem
% Rating : 0.07 v9.0.0, 0.06 v8.2.0, 0.07 v7.5.0, 0.05 v7.4.0, 0.06 v7.3.0, 0.00 v6.1.0, 0.04 v6.0.0, 0.25 v5.5.0, 0.08 v5.4.0, 0.13 v5.3.0, 0.22 v5.2.0, 0.07 v5.0.0, 0.10 v4.1.0, 0.06 v4.0.1, 0.00 v3.4.0
% Syntax : Number of formulae : 96 ( 27 unt; 0 def)
% Number of atoms : 178 ( 0 equ)
% Maximal formula atoms : 3 ( 1 avg)
% Number of connectives : 83 ( 1 ~; 0 |; 14 &)
% ( 0 <=>; 68 =>; 0 <=; 0 <~>)
% Maximal formula depth : 7 ( 3 avg)
% Maximal term depth : 4 ( 1 avg)
% Number of predicates : 26 ( 26 usr; 0 prp; 1-3 aty)
% Number of functors : 27 ( 27 usr; 24 con; 0-2 aty)
% Number of variables : 128 ( 128 !; 0 ?)
% SPC : FOF_THM_RFO_NEQ
% Comments : Autogenerated from the OpenCyc KB. Documentation can be found at
% http://opencyc.org/doc/#TPTP_Challenge_Problem_Set
% : Cyc(R) Knowledge Base Copyright(C) 1995-2007 Cycorp, Inc., Austin,
% TX, USA. All rights reserved.
% : OpenCyc Knowledge Base Copyright(C) 2001-2007 Cycorp, Inc.,
% Austin, TX, USA. All rights reserved.
%------------------------------------------------------------------------------
%$problem_series(cyc_scaling_1,[CSR025+1,CSR026+1,CSR027+1,CSR028+1,CSR029+1,CSR030+1,CSR031+1,CSR032+1,CSR033+1,CSR034+1,CSR035+1,CSR036+1,CSR037+1,CSR038+1,CSR039+1,CSR040+1,CSR041+1,CSR042+1,CSR043+1,CSR044+1,CSR045+1,CSR046+1,CSR047+1,CSR048+1,CSR049+1,CSR050+1,CSR051+1,CSR052+1,CSR053+1,CSR054+1,CSR055+1,CSR056+1,CSR057+1,CSR058+1,CSR059+1,CSR060+1,CSR061+1,CSR062+1,CSR063+1,CSR064+1,CSR065+1,CSR066+1,CSR067+1,CSR068+1,CSR069+1,CSR070+1,CSR071+1,CSR072+1,CSR073+1,CSR074+1])
%$static(cyc_scaling_1,include('Axioms/CSR002+0.ax'))
%----Empty file include('Axioms/CSR002+0.ax').
%------------------------------------------------------------------------------
% Cyc Assertion #455528:
fof(just1,axiom,
transitivebinarypredicate(c_genls) ).
% Cyc Assertion #592971:
fof(just2,axiom,
genlmt(c_cycorpproductsmt,c_basekb) ).
% Cyc Assertion #600900:
fof(just3,axiom,
genlmt(c_cycnounlearnermt,c_cycorpproductsmt) ).
% Cyc Assertion #829544:
fof(just4,axiom,
genlmt(f_contentmtofcdafromeventfn(f_urlreferentfn(f_urlfn(s_http_ukencartamsncomencyclopedia_761573010_4united_states_of_americahtml)),c_translation_33),c_machinelearningspindleheadmt) ).
% Cyc Assertion #1322220:
fof(just5,axiom,
transitivebinarypredicate(c_genlmt) ).
% Cyc Assertion #1614635:
fof(just6,axiom,
genlmt(c_machinelearningspindleheadmt,c_cycnounlearnermt) ).
% Cyc Assertion #1650755:
fof(just7,axiom,
genlmt(c_basekb,c_universalvocabularymt) ).
% Cyc Assertion #1922596:
fof(just8,axiom,
genls(c_tptpcol_8_39940,c_tptpcol_7_39939) ).
fof(just9,axiom,
! [OBJ] :
( tptpcol_8_39940(OBJ)
=> tptpcol_7_39939(OBJ) ) ).
% Cyc Assertion #1923235:
fof(just10,axiom,
genls(c_tptpcol_9_40196,c_tptpcol_8_39940) ).
fof(just11,axiom,
! [OBJ] :
( tptpcol_9_40196(OBJ)
=> tptpcol_8_39940(OBJ) ) ).
% Cyc Assertion #1923554:
fof(just12,axiom,
genls(c_tptpcol_10_40324,c_tptpcol_9_40196) ).
fof(just13,axiom,
! [OBJ] :
( tptpcol_10_40324(OBJ)
=> tptpcol_9_40196(OBJ) ) ).
% Cyc Assertion #1923713:
fof(just14,axiom,
genls(c_tptpcol_11_40388,c_tptpcol_10_40324) ).
fof(just15,axiom,
! [OBJ] :
( tptpcol_11_40388(OBJ)
=> tptpcol_10_40324(OBJ) ) ).
% Cyc Assertion #1923792:
fof(just16,axiom,
genls(c_tptpcol_12_40420,c_tptpcol_11_40388) ).
fof(just17,axiom,
! [OBJ] :
( tptpcol_12_40420(OBJ)
=> tptpcol_11_40388(OBJ) ) ).
% Cyc Assertion #1923794:
fof(just18,axiom,
genls(c_tptpcol_13_40421,c_tptpcol_12_40420) ).
fof(just19,axiom,
! [OBJ] :
( tptpcol_13_40421(OBJ)
=> tptpcol_12_40420(OBJ) ) ).
% Cyc Assertion #1923813:
fof(just20,axiom,
genls(c_tptpcol_14_40429,c_tptpcol_13_40421) ).
fof(just21,axiom,
! [OBJ] :
( tptpcol_14_40429(OBJ)
=> tptpcol_13_40421(OBJ) ) ).
% Cyc Assertion #1923815:
fof(just22,axiom,
genls(c_tptpcol_15_40430,c_tptpcol_14_40429) ).
fof(just23,axiom,
! [OBJ] :
( tptpcol_15_40430(OBJ)
=> tptpcol_14_40429(OBJ) ) ).
% Cyc Assertion #398814:
fof(just24,axiom,
! [OBJ,COL1,COL2] :
~ ( isa(OBJ,COL1)
& isa(OBJ,COL2)
& disjointwith(COL1,COL2) ) ).
% Cyc Assertion #831913:
fof(just25,axiom,
! [SPECPRED,PRED,GENLPRED] :
( ( genlinverse(SPECPRED,PRED)
& genlinverse(PRED,GENLPRED) )
=> genlpreds(SPECPRED,GENLPRED) ) ).
% Cyc Constant #40273:
fof(just26,axiom,
! [ARG1,INS] :
( genlpreds(ARG1,INS)
=> predicate(INS) ) ).
fof(just27,axiom,
! [ARG1,INS] :
( genlpreds(ARG1,INS)
=> predicate(INS) ) ).
fof(just28,axiom,
! [INS,ARG2] :
( genlpreds(INS,ARG2)
=> predicate(INS) ) ).
fof(just29,axiom,
! [INS,ARG2] :
( genlpreds(INS,ARG2)
=> predicate(INS) ) ).
fof(just30,axiom,
! [X,Y,Z] :
( ( genlpreds(X,Y)
& genlpreds(Y,Z) )
=> genlpreds(X,Z) ) ).
fof(just31,axiom,
! [X] :
( predicate(X)
=> genlpreds(X,X) ) ).
fof(just32,axiom,
! [X] :
( predicate(X)
=> genlpreds(X,X) ) ).
% Cyc Constant #45259:
fof(just33,axiom,
! [ARG1,INS] :
( genlinverse(ARG1,INS)
=> binarypredicate(INS) ) ).
fof(just34,axiom,
! [INS,ARG2] :
( genlinverse(INS,ARG2)
=> binarypredicate(INS) ) ).
fof(just35,axiom,
! [OLD,ARG2,NEW] :
( ( genlinverse(OLD,ARG2)
& genlpreds(NEW,OLD) )
=> genlinverse(NEW,ARG2) ) ).
fof(just36,axiom,
! [ARG1,OLD,NEW] :
( ( genlinverse(ARG1,OLD)
& genlpreds(OLD,NEW) )
=> genlinverse(ARG1,NEW) ) ).
% Cyc Constant #78648:
fof(just37,axiom,
! [ARG1,INS] :
( disjointwith(ARG1,INS)
=> collection(INS) ) ).
fof(just38,axiom,
! [INS,ARG2] :
( disjointwith(INS,ARG2)
=> collection(INS) ) ).
fof(just39,axiom,
! [X,Y] :
( disjointwith(X,Y)
=> disjointwith(Y,X) ) ).
fof(just40,axiom,
! [ARG1,OLD,NEW] :
( ( disjointwith(ARG1,OLD)
& genls(NEW,OLD) )
=> disjointwith(ARG1,NEW) ) ).
fof(just41,axiom,
! [OLD,ARG2,NEW] :
( ( disjointwith(OLD,ARG2)
& genls(NEW,OLD) )
=> disjointwith(NEW,ARG2) ) ).
% Cyc Constant #170027:
fof(just42,axiom,
! [X] :
( isa(X,c_tptpcol_15_40430)
=> tptpcol_15_40430(X) ) ).
fof(just43,axiom,
! [X] :
( tptpcol_15_40430(X)
=> isa(X,c_tptpcol_15_40430) ) ).
% Cyc Constant #170026:
fof(just44,axiom,
! [X] :
( isa(X,c_tptpcol_14_40429)
=> tptpcol_14_40429(X) ) ).
fof(just45,axiom,
! [X] :
( tptpcol_14_40429(X)
=> isa(X,c_tptpcol_14_40429) ) ).
% Cyc Constant #170018:
fof(just46,axiom,
! [X] :
( isa(X,c_tptpcol_13_40421)
=> tptpcol_13_40421(X) ) ).
fof(just47,axiom,
! [X] :
( tptpcol_13_40421(X)
=> isa(X,c_tptpcol_13_40421) ) ).
% Cyc Constant #170017:
fof(just48,axiom,
! [X] :
( isa(X,c_tptpcol_12_40420)
=> tptpcol_12_40420(X) ) ).
fof(just49,axiom,
! [X] :
( tptpcol_12_40420(X)
=> isa(X,c_tptpcol_12_40420) ) ).
% Cyc Constant #169985:
fof(just50,axiom,
! [X] :
( isa(X,c_tptpcol_11_40388)
=> tptpcol_11_40388(X) ) ).
fof(just51,axiom,
! [X] :
( tptpcol_11_40388(X)
=> isa(X,c_tptpcol_11_40388) ) ).
% Cyc Constant #169921:
fof(just52,axiom,
! [X] :
( isa(X,c_tptpcol_10_40324)
=> tptpcol_10_40324(X) ) ).
fof(just53,axiom,
! [X] :
( tptpcol_10_40324(X)
=> isa(X,c_tptpcol_10_40324) ) ).
% Cyc Constant #169793:
fof(just54,axiom,
! [X] :
( isa(X,c_tptpcol_9_40196)
=> tptpcol_9_40196(X) ) ).
fof(just55,axiom,
! [X] :
( tptpcol_9_40196(X)
=> isa(X,c_tptpcol_9_40196) ) ).
% Cyc Constant #169536:
fof(just56,axiom,
! [X] :
( isa(X,c_tptpcol_7_39939)
=> tptpcol_7_39939(X) ) ).
fof(just57,axiom,
! [X] :
( tptpcol_7_39939(X)
=> isa(X,c_tptpcol_7_39939) ) ).
% Cyc Constant #169537:
fof(just58,axiom,
! [X] :
( isa(X,c_tptpcol_8_39940)
=> tptpcol_8_39940(X) ) ).
fof(just59,axiom,
! [X] :
( tptpcol_8_39940(X)
=> isa(X,c_tptpcol_8_39940) ) ).
% Cyc Constant #129091:
fof(just60,axiom,
! [ARG1] : natfunction(f_urlfn(ARG1),c_urlfn) ).
fof(just61,axiom,
! [ARG1] : natargument(f_urlfn(ARG1),n_1,ARG1) ).
fof(just62,axiom,
! [ARG1] : uniformresourcelocator(f_urlfn(ARG1)) ).
% Cyc Constant #78971:
fof(just63,axiom,
! [ARG1] : natfunction(f_urlreferentfn(ARG1),c_urlreferentfn) ).
fof(just64,axiom,
! [ARG1] : natargument(f_urlreferentfn(ARG1),n_1,ARG1) ).
fof(just65,axiom,
! [ARG1] : computerdataartifact(f_urlreferentfn(ARG1)) ).
% Cyc Constant #71728:
fof(just66,axiom,
! [ARG1,ARG2] : natfunction(f_contentmtofcdafromeventfn(ARG1,ARG2),c_contentmtofcdafromeventfn) ).
fof(just67,axiom,
! [ARG1,ARG2] : natargument(f_contentmtofcdafromeventfn(ARG1,ARG2),n_1,ARG1) ).
fof(just68,axiom,
! [ARG1,ARG2] : natargument(f_contentmtofcdafromeventfn(ARG1,ARG2),n_2,ARG2) ).
fof(just69,axiom,
! [ARG1,ARG2] : microtheory(f_contentmtofcdafromeventfn(ARG1,ARG2)) ).
% Cyc Constant #19550:
fof(just70,axiom,
! [SPECMT,GENLMT] :
( ( mtvisible(SPECMT)
& genlmt(SPECMT,GENLMT) )
=> mtvisible(GENLMT) ) ).
fof(just71,axiom,
! [ARG1,INS] :
( genlmt(ARG1,INS)
=> microtheory(INS) ) ).
fof(just72,axiom,
! [ARG1,INS] :
( genlmt(ARG1,INS)
=> microtheory(INS) ) ).
fof(just73,axiom,
! [INS,ARG2] :
( genlmt(INS,ARG2)
=> microtheory(INS) ) ).
fof(just74,axiom,
! [INS,ARG2] :
( genlmt(INS,ARG2)
=> microtheory(INS) ) ).
fof(just75,axiom,
! [X,Y,Z] :
( ( genlmt(X,Y)
& genlmt(Y,Z) )
=> genlmt(X,Z) ) ).
fof(just76,axiom,
! [X] :
( microtheory(X)
=> genlmt(X,X) ) ).
fof(just77,axiom,
! [X] :
( microtheory(X)
=> genlmt(X,X) ) ).
% Cyc Constant #27757:
fof(just78,axiom,
mtvisible(c_basekb) ).
% Cyc Constant #127156:
fof(just79,axiom,
! [X] :
( isa(X,c_transitivebinarypredicate)
=> transitivebinarypredicate(X) ) ).
fof(just80,axiom,
! [X] :
( transitivebinarypredicate(X)
=> isa(X,c_transitivebinarypredicate) ) ).
% Cyc Constant #0:
fof(just81,axiom,
! [ARG1,INS] :
( genls(ARG1,INS)
=> collection(INS) ) ).
fof(just82,axiom,
! [ARG1,INS] :
( genls(ARG1,INS)
=> collection(INS) ) ).
fof(just83,axiom,
! [INS,ARG2] :
( genls(INS,ARG2)
=> collection(INS) ) ).
fof(just84,axiom,
! [INS,ARG2] :
( genls(INS,ARG2)
=> collection(INS) ) ).
fof(just85,axiom,
! [X,Y,Z] :
( ( genls(X,Y)
& genls(Y,Z) )
=> genls(X,Z) ) ).
fof(just86,axiom,
! [X] :
( collection(X)
=> genls(X,X) ) ).
fof(just87,axiom,
! [X] :
( collection(X)
=> genls(X,X) ) ).
fof(just88,axiom,
! [OLD,ARG2,NEW] :
( ( genls(OLD,ARG2)
& genls(NEW,OLD) )
=> genls(NEW,ARG2) ) ).
fof(just89,axiom,
! [ARG1,OLD,NEW] :
( ( genls(ARG1,OLD)
& genls(OLD,NEW) )
=> genls(ARG1,NEW) ) ).
% Cyc Constant #72115:
fof(just90,axiom,
! [ARG1,INS] :
( isa(ARG1,INS)
=> collection(INS) ) ).
fof(just91,axiom,
! [ARG1,INS] :
( isa(ARG1,INS)
=> collection(INS) ) ).
fof(just92,axiom,
! [INS,ARG2] :
( isa(INS,ARG2)
=> thing(INS) ) ).
fof(just93,axiom,
! [INS,ARG2] :
( isa(INS,ARG2)
=> thing(INS) ) ).
fof(just94,axiom,
! [ARG1,OLD,NEW] :
( ( isa(ARG1,OLD)
& genls(OLD,NEW) )
=> isa(ARG1,NEW) ) ).
% Cyc Constant #95028:
fof(just95,axiom,
mtvisible(c_universalvocabularymt) ).
fof(query52,conjecture,
( mtvisible(f_contentmtofcdafromeventfn(f_urlreferentfn(f_urlfn(s_http_ukencartamsncomencyclopedia_761573010_4united_states_of_americahtml)),c_translation_33))
=> genls(c_tptpcol_15_40430,c_tptpcol_7_39939) ) ).
%------------------------------------------------------------------------------