TPTP Problem File: CSR044+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : CSR044+1 : TPTP v9.0.0. Released v3.4.0.
% Domain : Common Sense Reasoning
% Problem : Autogenerated Cyc Problem CSR044+1
% Version : Especial.
% English :
% Refs : [RS+] Reagan Smith et al., The Cyc TPTP Challenge Problem
% Source : [RS+]
% Names :
% Status : Theorem
% Rating : 0.07 v9.0.0, 0.00 v6.3.0, 0.08 v6.2.0, 0.00 v6.1.0, 0.04 v6.0.0, 0.25 v5.5.0, 0.17 v5.3.0, 0.26 v5.2.0, 0.14 v5.0.0, 0.20 v4.1.0, 0.17 v4.0.1, 0.16 v4.0.0, 0.15 v3.7.0, 0.00 v3.4.0
% Syntax : Number of formulae : 65 ( 17 unt; 0 def)
% Number of atoms : 126 ( 0 equ)
% Maximal formula atoms : 3 ( 1 avg)
% Number of connectives : 62 ( 1 ~; 0 |; 14 &)
% ( 0 <=>; 47 =>; 0 <=; 0 <~>)
% Maximal formula depth : 7 ( 4 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 23 ( 23 usr; 0 prp; 1-3 aty)
% Number of functors : 19 ( 19 usr; 18 con; 0-4 aty)
% Number of variables : 120 ( 119 !; 1 ?)
% SPC : FOF_THM_RFO_NEQ
% Comments : Autogenerated from the OpenCyc KB. Documentation can be found at
% http://opencyc.org/doc/#TPTP_Challenge_Problem_Set
% : Cyc(R) Knowledge Base Copyright(C) 1995-2007 Cycorp, Inc., Austin,
% TX, USA. All rights reserved.
% : OpenCyc Knowledge Base Copyright(C) 2001-2007 Cycorp, Inc.,
% Austin, TX, USA. All rights reserved.
%------------------------------------------------------------------------------
%$problem_series(cyc_scaling_1,[CSR025+1,CSR026+1,CSR027+1,CSR028+1,CSR029+1,CSR030+1,CSR031+1,CSR032+1,CSR033+1,CSR034+1,CSR035+1,CSR036+1,CSR037+1,CSR038+1,CSR039+1,CSR040+1,CSR041+1,CSR042+1,CSR043+1,CSR044+1,CSR045+1,CSR046+1,CSR047+1,CSR048+1,CSR049+1,CSR050+1,CSR051+1,CSR052+1,CSR053+1,CSR054+1,CSR055+1,CSR056+1,CSR057+1,CSR058+1,CSR059+1,CSR060+1,CSR061+1,CSR062+1,CSR063+1,CSR064+1,CSR065+1,CSR066+1,CSR067+1,CSR068+1,CSR069+1,CSR070+1,CSR071+1,CSR072+1,CSR073+1,CSR074+1])
%$static(cyc_scaling_1,include('Axioms/CSR002+0.ax'))
%----Empty file include('Axioms/CSR002+0.ax').
%------------------------------------------------------------------------------
% Cyc Assertion #1008490:
fof(just1,axiom,
! [TERM,INDEPCOL,PRED,DEPCOL] :
( ( isa(TERM,INDEPCOL)
& relationallexists(PRED,INDEPCOL,DEPCOL) )
=> isa(f_relationallexistsfn(TERM,PRED,INDEPCOL,DEPCOL),DEPCOL) ) ).
fof(just2,axiom,
resultisaarg(c_relationallexistsfn,n_4) ).
% Cyc Assertion #1077444:
fof(just3,axiom,
genlmt(c_calendarsmt,c_calendarsvocabularymt) ).
% Cyc Assertion #1322220:
fof(just4,axiom,
transitivebinarypredicate(c_genlmt) ).
% Cyc Assertion #1650755:
fof(just5,axiom,
genlmt(c_basekb,c_universalvocabularymt) ).
% Cyc Assertion #1706514:
fof(just6,axiom,
genlmt(c_cyclistsmt,c_calendarsmt) ).
% Cyc Assertion #1746783:
fof(just7,axiom,
genlmt(c_calendarsvocabularymt,c_basekb) ).
% Cyc Assertion #2170932:
fof(just8,axiom,
genlmt(c_tptp_spindleheadmt,c_cyclistsmt) ).
% Cyc Assertion #2185467:
fof(just9,axiom,
genlmt(c_tptp_member3633_mt,c_tptp_spindleheadmt) ).
% Cyc Assertion #2191631:
fof(just10,axiom,
! [TERM] :
( ( mtvisible(c_cyclistsmt)
& executionbyfiringsquad(TERM) )
=> tptp_9_720(TERM,f_relationallexistsfn(TERM,c_tptp_9_720,c_executionbyfiringsquad,c_tptpcol_16_29490)) ) ).
fof(just11,axiom,
( mtvisible(c_cyclistsmt)
=> relationallexists(c_tptp_9_720,c_executionbyfiringsquad,c_tptpcol_16_29490) ) ).
% Cyc Assertion #2246811:
fof(just12,axiom,
executionbyfiringsquad(c_tptpexecutionbyfiringsquad_90) ).
% Cyc Assertion #398814:
fof(just13,axiom,
! [OBJ,COL1,COL2] :
~ ( isa(OBJ,COL1)
& isa(OBJ,COL2)
& disjointwith(COL1,COL2) ) ).
% Cyc Assertion #831913:
fof(just14,axiom,
! [SPECPRED,PRED,GENLPRED] :
( ( genlinverse(SPECPRED,PRED)
& genlinverse(PRED,GENLPRED) )
=> genlpreds(SPECPRED,GENLPRED) ) ).
% Cyc Constant #40273:
fof(just15,axiom,
! [ARG1,INS] :
( genlpreds(ARG1,INS)
=> predicate(INS) ) ).
fof(just16,axiom,
! [ARG1,INS] :
( genlpreds(ARG1,INS)
=> predicate(INS) ) ).
fof(just17,axiom,
! [INS,ARG2] :
( genlpreds(INS,ARG2)
=> predicate(INS) ) ).
fof(just18,axiom,
! [INS,ARG2] :
( genlpreds(INS,ARG2)
=> predicate(INS) ) ).
fof(just19,axiom,
! [X,Y,Z] :
( ( genlpreds(X,Y)
& genlpreds(Y,Z) )
=> genlpreds(X,Z) ) ).
fof(just20,axiom,
! [X] :
( predicate(X)
=> genlpreds(X,X) ) ).
fof(just21,axiom,
! [X] :
( predicate(X)
=> genlpreds(X,X) ) ).
% Cyc Constant #45259:
fof(just22,axiom,
! [ARG1,INS] :
( genlinverse(ARG1,INS)
=> binarypredicate(INS) ) ).
fof(just23,axiom,
! [INS,ARG2] :
( genlinverse(INS,ARG2)
=> binarypredicate(INS) ) ).
fof(just24,axiom,
! [OLD,ARG2,NEW] :
( ( genlinverse(OLD,ARG2)
& genlpreds(NEW,OLD) )
=> genlinverse(NEW,ARG2) ) ).
fof(just25,axiom,
! [ARG1,OLD,NEW] :
( ( genlinverse(ARG1,OLD)
& genlpreds(OLD,NEW) )
=> genlinverse(ARG1,NEW) ) ).
% Cyc Constant #78648:
fof(just26,axiom,
! [ARG1,INS] :
( disjointwith(ARG1,INS)
=> collection(INS) ) ).
fof(just27,axiom,
! [INS,ARG2] :
( disjointwith(INS,ARG2)
=> collection(INS) ) ).
fof(just28,axiom,
! [X,Y] :
( disjointwith(X,Y)
=> disjointwith(Y,X) ) ).
fof(just29,axiom,
! [ARG1,OLD,NEW] :
( ( disjointwith(ARG1,OLD)
& genls(NEW,OLD) )
=> disjointwith(ARG1,NEW) ) ).
fof(just30,axiom,
! [OLD,ARG2,NEW] :
( ( disjointwith(OLD,ARG2)
& genls(NEW,OLD) )
=> disjointwith(NEW,ARG2) ) ).
% Cyc Constant #159087:
fof(just31,axiom,
! [X] :
( isa(X,c_tptpcol_16_29490)
=> tptpcol_16_29490(X) ) ).
fof(just32,axiom,
! [X] :
( tptpcol_16_29490(X)
=> isa(X,c_tptpcol_16_29490) ) ).
% Cyc Constant #33466:
fof(just33,axiom,
! [X] :
( isa(X,c_executionbyfiringsquad)
=> executionbyfiringsquad(X) ) ).
fof(just34,axiom,
! [X] :
( executionbyfiringsquad(X)
=> isa(X,c_executionbyfiringsquad) ) ).
% Cyc Constant #262228:
fof(just35,axiom,
! [ARG1,INS] :
( tptp_9_720(ARG1,INS)
=> tptpcol_5_28674(INS) ) ).
fof(just36,axiom,
! [INS,ARG2] :
( tptp_9_720(INS,ARG2)
=> executionbyfiringsquad(INS) ) ).
% Cyc Constant #67447:
fof(just37,axiom,
! [ARG1,ARG2,INS] :
( relationallexists(ARG1,ARG2,INS)
=> collection(INS) ) ).
fof(just38,axiom,
! [ARG1,INS,ARG3] :
( relationallexists(ARG1,INS,ARG3)
=> collection(INS) ) ).
fof(just39,axiom,
! [INS,ARG2,ARG3] :
( relationallexists(INS,ARG2,ARG3)
=> binarypredicate(INS) ) ).
% Cyc Constant #27757:
fof(just40,axiom,
mtvisible(c_basekb) ).
% Cyc Constant #127156:
fof(just41,axiom,
! [X] :
( isa(X,c_transitivebinarypredicate)
=> transitivebinarypredicate(X) ) ).
fof(just42,axiom,
! [X] :
( transitivebinarypredicate(X)
=> isa(X,c_transitivebinarypredicate) ) ).
% Cyc Constant #72115:
fof(just43,axiom,
! [ARG1,INS] :
( isa(ARG1,INS)
=> collection(INS) ) ).
fof(just44,axiom,
! [ARG1,INS] :
( isa(ARG1,INS)
=> collection(INS) ) ).
fof(just45,axiom,
! [INS,ARG2] :
( isa(INS,ARG2)
=> thing(INS) ) ).
fof(just46,axiom,
! [INS,ARG2] :
( isa(INS,ARG2)
=> thing(INS) ) ).
fof(just47,axiom,
! [ARG1,OLD,NEW] :
( ( isa(ARG1,OLD)
& genls(OLD,NEW) )
=> isa(ARG1,NEW) ) ).
% Cyc Constant #19550:
fof(just48,axiom,
! [SPECMT,GENLMT] :
( ( mtvisible(SPECMT)
& genlmt(SPECMT,GENLMT) )
=> mtvisible(GENLMT) ) ).
fof(just49,axiom,
! [ARG1,INS] :
( genlmt(ARG1,INS)
=> microtheory(INS) ) ).
fof(just50,axiom,
! [ARG1,INS] :
( genlmt(ARG1,INS)
=> microtheory(INS) ) ).
fof(just51,axiom,
! [INS,ARG2] :
( genlmt(INS,ARG2)
=> microtheory(INS) ) ).
fof(just52,axiom,
! [INS,ARG2] :
( genlmt(INS,ARG2)
=> microtheory(INS) ) ).
fof(just53,axiom,
! [X,Y,Z] :
( ( genlmt(X,Y)
& genlmt(Y,Z) )
=> genlmt(X,Z) ) ).
fof(just54,axiom,
! [X] :
( microtheory(X)
=> genlmt(X,X) ) ).
fof(just55,axiom,
! [X] :
( microtheory(X)
=> genlmt(X,X) ) ).
% Cyc Constant #104318:
fof(just56,axiom,
! [ARG1,ARG2,ARG3,ARG4] : natfunction(f_relationallexistsfn(ARG1,ARG2,ARG3,ARG4),c_relationallexistsfn) ).
fof(just57,axiom,
! [ARG1,ARG2,ARG3,ARG4] : natargument(f_relationallexistsfn(ARG1,ARG2,ARG3,ARG4),n_1,ARG1) ).
fof(just58,axiom,
! [ARG1,ARG2,ARG3,ARG4] : natargument(f_relationallexistsfn(ARG1,ARG2,ARG3,ARG4),n_2,ARG2) ).
fof(just59,axiom,
! [ARG1,ARG2,ARG3,ARG4] : natargument(f_relationallexistsfn(ARG1,ARG2,ARG3,ARG4),n_3,ARG3) ).
fof(just60,axiom,
! [ARG1,ARG2,ARG3,ARG4] : natargument(f_relationallexistsfn(ARG1,ARG2,ARG3,ARG4),n_4,ARG4) ).
fof(just61,axiom,
! [ARG1,ARG2,ARG3,ARG4] : thing(f_relationallexistsfn(ARG1,ARG2,ARG3,ARG4)) ).
% Cyc Constant #97397:
fof(just62,axiom,
! [ARG1,INS] :
( resultisaarg(ARG1,INS)
=> positiveinteger(INS) ) ).
fof(just63,axiom,
! [INS,ARG2] :
( resultisaarg(INS,ARG2)
=> function_denotational(INS) ) ).
% Cyc Constant #95028:
fof(just64,axiom,
mtvisible(c_universalvocabularymt) ).
fof(query44,conjecture,
? [X] :
( mtvisible(c_tptp_member3633_mt)
=> ( tptp_9_720(c_tptpexecutionbyfiringsquad_90,X)
& tptpcol_16_29490(X) ) ) ).
%------------------------------------------------------------------------------