TPTP Problem File: CSR029+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : CSR029+1 : TPTP v9.0.0. Released v3.4.0.
% Domain : Common Sense Reasoning
% Problem : Autogenerated Cyc Problem CSR029+1
% Version : Especial.
% English :
% Refs : [RS+] Reagan Smith et al., The Cyc TPTP Challenge Problem
% Source : [RS+]
% Names :
% Status : Theorem
% Rating : 0.00 v6.0.0, 0.33 v5.5.0, 0.22 v5.4.0, 0.11 v5.3.0, 0.09 v5.2.0, 0.00 v4.1.0, 0.06 v4.0.1, 0.00 v3.4.0
% Syntax : Number of formulae : 58 ( 10 unt; 0 def)
% Number of atoms : 119 ( 0 equ)
% Maximal formula atoms : 3 ( 2 avg)
% Number of connectives : 62 ( 1 ~; 0 |; 14 &)
% ( 0 <=>; 47 =>; 0 <=; 0 <~>)
% Maximal formula depth : 7 ( 4 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 18 ( 18 usr; 0 prp; 1-2 aty)
% Number of functors : 14 ( 14 usr; 14 con; 0-0 aty)
% Number of variables : 89 ( 89 !; 0 ?)
% SPC : FOF_THM_EPR_NEQ
% Comments : Autogenerated from the OpenCyc KB. Documentation can be found at
% http://opencyc.org/doc/#TPTP_Challenge_Problem_Set
% : Cyc(R) Knowledge Base Copyright(C) 1995-2007 Cycorp, Inc., Austin,
% TX, USA. All rights reserved.
% : OpenCyc Knowledge Base Copyright(C) 2001-2007 Cycorp, Inc.,
% Austin, TX, USA. All rights reserved.
%------------------------------------------------------------------------------
%$problem_series(cyc_scaling_1,[CSR025+1,CSR026+1,CSR027+1,CSR028+1,CSR029+1,CSR030+1,CSR031+1,CSR032+1,CSR033+1,CSR034+1,CSR035+1,CSR036+1,CSR037+1,CSR038+1,CSR039+1,CSR040+1,CSR041+1,CSR042+1,CSR043+1,CSR044+1,CSR045+1,CSR046+1,CSR047+1,CSR048+1,CSR049+1,CSR050+1,CSR051+1,CSR052+1,CSR053+1,CSR054+1,CSR055+1,CSR056+1,CSR057+1,CSR058+1,CSR059+1,CSR060+1,CSR061+1,CSR062+1,CSR063+1,CSR064+1,CSR065+1,CSR066+1,CSR067+1,CSR068+1,CSR069+1,CSR070+1,CSR071+1,CSR072+1,CSR073+1,CSR074+1])
%$static(cyc_scaling_1,include('Axioms/CSR002+0.ax'))
%----Empty file include('Axioms/CSR002+0.ax').
%------------------------------------------------------------------------------
% Cyc Assertion #253062:
fof(just1,axiom,
genlmt(c_geographymt,c_basekb) ).
% Cyc Assertion #536720:
fof(just2,axiom,
transitivebinarypredicate(c_inregion) ).
% Cyc Assertion #631445:
fof(just3,axiom,
genlmt(c_worldgeographymt,c_geographymt) ).
% Cyc Assertion #1144679:
fof(just4,axiom,
genlinverse(c_geographicalsubregions,c_inregion) ).
fof(just5,axiom,
! [ARG1,ARG2] :
( geographicalsubregions(ARG1,ARG2)
=> inregion(ARG2,ARG1) ) ).
% Cyc Assertion #1322220:
fof(just6,axiom,
transitivebinarypredicate(c_genlmt) ).
% Cyc Assertion #1650755:
fof(just7,axiom,
genlmt(c_basekb,c_universalvocabularymt) ).
% Cyc Assertion #2463131:
fof(just8,axiom,
genlmt(c_tptpgeo_spindleheadmt,c_worldgeographymt) ).
% Cyc Assertion #2463146:
fof(just9,axiom,
genlmt(c_tptpgeo_member3_mt,c_tptpgeo_spindleheadmt) ).
% Cyc Assertion #2477332:
fof(just10,axiom,
( mtvisible(c_worldgeographymt)
=> geolevel_3(c_georegion_l3_x4_y13) ) ).
% Cyc Assertion #2493055:
fof(just11,axiom,
( mtvisible(c_tptpgeo_member3_mt)
=> geographicalsubregions(c_georegion_l3_x4_y13,c_georegion_l4_x14_y39) ) ).
% Cyc Assertion #2499616:
fof(just12,axiom,
( mtvisible(c_tptpgeo_member3_mt)
=> inregion(c_geolocation_x14_y39,c_georegion_l4_x14_y39) ) ).
% Cyc Assertion #398814:
fof(just13,axiom,
! [OBJ,COL1,COL2] :
~ ( isa(OBJ,COL1)
& isa(OBJ,COL2)
& disjointwith(COL1,COL2) ) ).
% Cyc Assertion #831913:
fof(just14,axiom,
! [SPECPRED,PRED,GENLPRED] :
( ( genlinverse(SPECPRED,PRED)
& genlinverse(PRED,GENLPRED) )
=> genlpreds(SPECPRED,GENLPRED) ) ).
% Cyc Constant #40273:
fof(just15,axiom,
! [ARG1,INS] :
( genlpreds(ARG1,INS)
=> predicate(INS) ) ).
fof(just16,axiom,
! [ARG1,INS] :
( genlpreds(ARG1,INS)
=> predicate(INS) ) ).
fof(just17,axiom,
! [INS,ARG2] :
( genlpreds(INS,ARG2)
=> predicate(INS) ) ).
fof(just18,axiom,
! [INS,ARG2] :
( genlpreds(INS,ARG2)
=> predicate(INS) ) ).
fof(just19,axiom,
! [X,Y,Z] :
( ( genlpreds(X,Y)
& genlpreds(Y,Z) )
=> genlpreds(X,Z) ) ).
fof(just20,axiom,
! [X] :
( predicate(X)
=> genlpreds(X,X) ) ).
fof(just21,axiom,
! [X] :
( predicate(X)
=> genlpreds(X,X) ) ).
% Cyc Constant #78648:
fof(just22,axiom,
! [ARG1,INS] :
( disjointwith(ARG1,INS)
=> collection(INS) ) ).
fof(just23,axiom,
! [INS,ARG2] :
( disjointwith(INS,ARG2)
=> collection(INS) ) ).
fof(just24,axiom,
! [X,Y] :
( disjointwith(X,Y)
=> disjointwith(Y,X) ) ).
fof(just25,axiom,
! [ARG1,OLD,NEW] :
( ( disjointwith(ARG1,OLD)
& genls(NEW,OLD) )
=> disjointwith(ARG1,NEW) ) ).
fof(just26,axiom,
! [OLD,ARG2,NEW] :
( ( disjointwith(OLD,ARG2)
& genls(NEW,OLD) )
=> disjointwith(NEW,ARG2) ) ).
% Cyc Constant #380145:
fof(just27,axiom,
! [X] :
( isa(X,c_geolevel_3)
=> geolevel_3(X) ) ).
fof(just28,axiom,
! [X] :
( geolevel_3(X)
=> isa(X,c_geolevel_3) ) ).
% Cyc Constant #119918:
fof(just29,axiom,
! [ARG1,INS] :
( geographicalsubregions(ARG1,INS)
=> geographicalregion(INS) ) ).
fof(just30,axiom,
! [INS,ARG2] :
( geographicalsubregions(INS,ARG2)
=> geographicalregion(INS) ) ).
fof(just31,axiom,
! [X,Y,Z] :
( ( geographicalsubregions(X,Y)
& geographicalsubregions(Y,Z) )
=> geographicalsubregions(X,Z) ) ).
fof(just32,axiom,
! [X] :
( geographicalregion(X)
=> geographicalsubregions(X,X) ) ).
% Cyc Constant #45259:
fof(just33,axiom,
! [ARG1,INS] :
( genlinverse(ARG1,INS)
=> binarypredicate(INS) ) ).
fof(just34,axiom,
! [INS,ARG2] :
( genlinverse(INS,ARG2)
=> binarypredicate(INS) ) ).
fof(just35,axiom,
! [OLD,ARG2,NEW] :
( ( genlinverse(OLD,ARG2)
& genlpreds(NEW,OLD) )
=> genlinverse(NEW,ARG2) ) ).
fof(just36,axiom,
! [ARG1,OLD,NEW] :
( ( genlinverse(ARG1,OLD)
& genlpreds(OLD,NEW) )
=> genlinverse(ARG1,NEW) ) ).
% Cyc Constant #127156:
fof(just37,axiom,
! [X] :
( isa(X,c_transitivebinarypredicate)
=> transitivebinarypredicate(X) ) ).
fof(just38,axiom,
! [X] :
( transitivebinarypredicate(X)
=> isa(X,c_transitivebinarypredicate) ) ).
% Cyc Constant #98385:
fof(just39,axiom,
! [ARG1,INS] :
( inregion(ARG1,INS)
=> spatialthing_nonsituational(INS) ) ).
fof(just40,axiom,
! [INS,ARG2] :
( inregion(INS,ARG2)
=> spatialthing_nonsituational(INS) ) ).
fof(just41,axiom,
! [X,Y,Z] :
( ( inregion(X,Y)
& inregion(Y,Z) )
=> inregion(X,Z) ) ).
fof(just42,axiom,
! [X] :
( spatialthing_nonsituational(X)
=> inregion(X,X) ) ).
% Cyc Constant #72115:
fof(just43,axiom,
! [ARG1,INS] :
( isa(ARG1,INS)
=> collection(INS) ) ).
fof(just44,axiom,
! [ARG1,INS] :
( isa(ARG1,INS)
=> collection(INS) ) ).
fof(just45,axiom,
! [INS,ARG2] :
( isa(INS,ARG2)
=> thing(INS) ) ).
fof(just46,axiom,
! [INS,ARG2] :
( isa(INS,ARG2)
=> thing(INS) ) ).
fof(just47,axiom,
! [ARG1,OLD,NEW] :
( ( isa(ARG1,OLD)
& genls(OLD,NEW) )
=> isa(ARG1,NEW) ) ).
% Cyc Constant #95028:
fof(just48,axiom,
mtvisible(c_universalvocabularymt) ).
% Cyc Constant #19550:
fof(just49,axiom,
! [SPECMT,GENLMT] :
( ( mtvisible(SPECMT)
& genlmt(SPECMT,GENLMT) )
=> mtvisible(GENLMT) ) ).
fof(just50,axiom,
! [ARG1,INS] :
( genlmt(ARG1,INS)
=> microtheory(INS) ) ).
fof(just51,axiom,
! [ARG1,INS] :
( genlmt(ARG1,INS)
=> microtheory(INS) ) ).
fof(just52,axiom,
! [INS,ARG2] :
( genlmt(INS,ARG2)
=> microtheory(INS) ) ).
fof(just53,axiom,
! [INS,ARG2] :
( genlmt(INS,ARG2)
=> microtheory(INS) ) ).
fof(just54,axiom,
! [X,Y,Z] :
( ( genlmt(X,Y)
& genlmt(Y,Z) )
=> genlmt(X,Z) ) ).
fof(just55,axiom,
! [X] :
( microtheory(X)
=> genlmt(X,X) ) ).
fof(just56,axiom,
! [X] :
( microtheory(X)
=> genlmt(X,X) ) ).
% Cyc Constant #27757:
fof(just57,axiom,
mtvisible(c_basekb) ).
fof(query29,conjecture,
( mtvisible(c_tptpgeo_member3_mt)
=> ( inregion(c_geolocation_x14_y39,c_georegion_l3_x4_y13)
& geolevel_3(c_georegion_l3_x4_y13) ) ) ).
%------------------------------------------------------------------------------