TPTP Problem File: COM183^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : COM183^1 : TPTP v9.0.0. Released v7.0.0.
% Domain : Computing Theory
% Problem : Grammars and languages 157
% Version : [Bla16] axioms : Especial.
% English :
% Refs : [BH+14] Blanchette et al. (2014), Truly Modular (Co)datatypes
% : [RB15] Reynolds & Blanchette (2015), A Decision Procedure for
% : [Bla16] Blanchette (2016), Email to Geoff Sutcliffe
% Source : [Bla16]
% Names : gram_lang__157.p [Bla16]
% Status : Theorem
% Rating : 0.00 v7.2.0, 0.25 v7.1.0
% Syntax : Number of formulae : 354 ( 92 unt; 57 typ; 0 def)
% Number of atoms : 773 ( 196 equ; 0 cnn)
% Maximal formula atoms : 13 ( 2 avg)
% Number of connectives : 3486 ( 45 ~; 4 |; 25 &;3068 @)
% ( 0 <=>; 344 =>; 0 <=; 0 <~>)
% Maximal formula depth : 18 ( 7 avg)
% Number of types : 4 ( 3 usr)
% Number of type conns : 159 ( 159 >; 0 *; 0 +; 0 <<)
% Number of symbols : 55 ( 54 usr; 4 con; 0-3 aty)
% Number of variables : 935 ( 61 ^; 826 !; 4 ?; 935 :)
% ( 44 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_NAR
% Comments : This file was generated by Isabelle (most likely Sledgehammer)
% 2016-07-13 14:40:45.275
%------------------------------------------------------------------------------
%----Could-be-implicit typings (5)
thf(ty_t_DTree_Odtree,type,
dtree: $tType ).
thf(ty_t_Set_Oset,type,
set: $tType > $tType ).
thf(ty_t_DTree_OT,type,
t: $tType ).
thf(ty_t_DTree_ON,type,
n: $tType ).
thf(ty_t_itself,type,
itself: $tType > $tType ).
%----Explicit typings (52)
thf(sy_cl_Lattices_Obounded__lattice,type,
bounded_lattice:
!>[A: $tType] : ( ( itself @ A ) > $o ) ).
thf(sy_cl_HOL_Otype,type,
type:
!>[A: $tType] : ( ( itself @ A ) > $o ) ).
thf(sy_cl_Groups_Ominus,type,
minus:
!>[A: $tType] : ( ( itself @ A ) > $o ) ).
thf(sy_cl_Groups_Ouminus,type,
uminus:
!>[A: $tType] : ( ( itself @ A ) > $o ) ).
thf(sy_cl_Orderings_Obot,type,
bot:
!>[A: $tType] : ( ( itself @ A ) > $o ) ).
thf(sy_cl_Orderings_Oord,type,
ord:
!>[A: $tType] : ( ( itself @ A ) > $o ) ).
thf(sy_cl_Num_Oneg__numeral,type,
neg_numeral:
!>[A: $tType] : ( ( itself @ A ) > $o ) ).
thf(sy_cl_Orderings_Oorder,type,
order:
!>[A: $tType] : ( ( itself @ A ) > $o ) ).
thf(sy_cl_Groups_Ogroup__add,type,
group_add:
!>[A: $tType] : ( ( itself @ A ) > $o ) ).
thf(sy_cl_Lattices_Olattice,type,
lattice:
!>[A: $tType] : ( ( itself @ A ) > $o ) ).
thf(sy_cl_Orderings_Olinorder,type,
linorder:
!>[A: $tType] : ( ( itself @ A ) > $o ) ).
thf(sy_cl_Orderings_Opreorder,type,
preorder:
!>[A: $tType] : ( ( itself @ A ) > $o ) ).
thf(sy_cl_Orderings_Oorder__bot,type,
order_bot:
!>[A: $tType] : ( ( itself @ A ) > $o ) ).
thf(sy_cl_Rings_Olinordered__idom,type,
linordered_idom:
!>[A: $tType] : ( ( itself @ A ) > $o ) ).
thf(sy_cl_Groups_Ocomm__monoid__diff,type,
comm_monoid_diff:
!>[A: $tType] : ( ( itself @ A ) > $o ) ).
thf(sy_cl_Lattices_Oboolean__algebra,type,
boolean_algebra:
!>[A: $tType] : ( ( itself @ A ) > $o ) ).
thf(sy_cl_Lattices_Osemilattice__sup,type,
semilattice_sup:
!>[A: $tType] : ( ( itself @ A ) > $o ) ).
thf(sy_cl_Rings_Olinordered__semidom,type,
linordered_semidom:
!>[A: $tType] : ( ( itself @ A ) > $o ) ).
thf(sy_cl_Groups_Oordered__ab__group__add,type,
ordered_ab_group_add:
!>[A: $tType] : ( ( itself @ A ) > $o ) ).
thf(sy_cl_Lattices_Obounded__lattice__bot,type,
bounded_lattice_bot:
!>[A: $tType] : ( ( itself @ A ) > $o ) ).
thf(sy_cl_Groups_Ocancel__comm__monoid__add,type,
cancel1352612707id_add:
!>[A: $tType] : ( ( itself @ A ) > $o ) ).
thf(sy_cl_Groups_Ocancel__ab__semigroup__add,type,
cancel146912293up_add:
!>[A: $tType] : ( ( itself @ A ) > $o ) ).
thf(sy_cl_Groups_Olinordered__ab__group__add,type,
linord219039673up_add:
!>[A: $tType] : ( ( itself @ A ) > $o ) ).
thf(sy_cl_Rings_Olinordered__nonzero__semiring,type,
linord1659791738miring:
!>[A: $tType] : ( ( itself @ A ) > $o ) ).
thf(sy_cl_Lattices_Obounded__semilattice__sup__bot,type,
bounde1808546759up_bot:
!>[A: $tType] : ( ( itself @ A ) > $o ) ).
thf(sy_cl_Groups_Ocanonically__ordered__monoid__add,type,
canoni770627133id_add:
!>[A: $tType] : ( ( itself @ A ) > $o ) ).
thf(sy_c_DTree_Odtree_Oroot,type,
root: dtree > n ).
thf(sy_c_Gram__Lang__Mirabelle__ojxrtuoybn_OFr,type,
gram_L861583724lle_Fr: ( set @ n ) > dtree > ( set @ t ) ).
thf(sy_c_Gram__Lang__Mirabelle__ojxrtuoybn_OinFr,type,
gram_L1333338417e_inFr: ( set @ n ) > dtree > t > $o ).
thf(sy_c_Gram__Lang__Mirabelle__ojxrtuoybn_OinFr2,type,
gram_L805317441_inFr2: ( set @ n ) > dtree > t > $o ).
thf(sy_c_Gram__Lang__Mirabelle__ojxrtuoybn_OinItr,type,
gram_L830233218_inItr: ( set @ n ) > dtree > n > $o ).
thf(sy_c_Gram__Lang__Mirabelle__ojxrtuoybn_Osubtr,type,
gram_L716654942_subtr: ( set @ n ) > dtree > dtree > $o ).
thf(sy_c_Groups_Ominus__class_Ominus,type,
minus_minus:
!>[A: $tType] : ( A > A > A ) ).
thf(sy_c_Groups_Oone__class_Oone,type,
one_one:
!>[A: $tType] : A ).
thf(sy_c_Groups_Ouminus__class_Ouminus,type,
uminus_uminus:
!>[A: $tType] : ( A > A ) ).
thf(sy_c_Groups_Ozero__class_Ozero,type,
zero_zero:
!>[A: $tType] : A ).
thf(sy_c_Lattices_Osemilattice__neutr,type,
semilattice_neutr:
!>[A: $tType] : ( ( A > A > A ) > A > $o ) ).
thf(sy_c_Lattices_Osup__class_Osup,type,
sup_sup:
!>[A: $tType] : ( A > A > A ) ).
thf(sy_c_Orderings_Obot__class_Obot,type,
bot_bot:
!>[A: $tType] : A ).
thf(sy_c_Orderings_Oord__class_Oless__eq,type,
ord_less_eq:
!>[A: $tType] : ( A > A > $o ) ).
thf(sy_c_Orderings_Oorder__class_Oantimono,type,
order_antimono:
!>[A: $tType,B: $tType] : ( ( A > B ) > $o ) ).
thf(sy_c_Orderings_Oorder__class_Ostrict__mono,type,
order_strict_mono:
!>[A: $tType,B: $tType] : ( ( A > B ) > $o ) ).
thf(sy_c_Pure_Otype,type,
type2:
!>[A: $tType] : ( itself @ A ) ).
thf(sy_c_Set_OCollect,type,
collect:
!>[A: $tType] : ( ( A > $o ) > ( set @ A ) ) ).
thf(sy_c_Set_Oinsert,type,
insert:
!>[A: $tType] : ( A > ( set @ A ) > ( set @ A ) ) ).
thf(sy_c_Set_Ois__empty,type,
is_empty:
!>[A: $tType] : ( ( set @ A ) > $o ) ).
thf(sy_c_Set_Opairwise,type,
pairwise:
!>[A: $tType] : ( ( A > A > $o ) > ( set @ A ) > $o ) ).
thf(sy_c_member,type,
member:
!>[A: $tType] : ( A > ( set @ A ) > $o ) ).
thf(sy_v_ns,type,
ns: set @ n ).
thf(sy_v_tr1,type,
tr1: dtree ).
thf(sy_v_tr2,type,
tr2: dtree ).
thf(sy_v_tr3,type,
tr3: dtree ).
%----Relevant facts (256)
thf(fact_0__092_060open_062subtr_A_Ins_A_092_060union_062_Ans_J_Atr1_Atr3_092_060close_062,axiom,
gram_L716654942_subtr @ ( sup_sup @ ( set @ n ) @ ns @ ns ) @ tr1 @ tr3 ).
% \<open>subtr (ns \<union> ns) tr1 tr3\<close>
thf(fact_1_assms_I2_J,axiom,
gram_L716654942_subtr @ ns @ tr2 @ tr3 ).
% assms(2)
thf(fact_2_assms_I1_J,axiom,
gram_L716654942_subtr @ ns @ tr1 @ tr2 ).
% assms(1)
thf(fact_3_subtr__trans__Un,axiom,
! [Ns12: set @ n,Tr1: dtree,Tr2: dtree,Ns23: set @ n,Tr3: dtree] :
( ( gram_L716654942_subtr @ Ns12 @ Tr1 @ Tr2 )
=> ( ( gram_L716654942_subtr @ Ns23 @ Tr2 @ Tr3 )
=> ( gram_L716654942_subtr @ ( sup_sup @ ( set @ n ) @ Ns12 @ Ns23 ) @ Tr1 @ Tr3 ) ) ) ).
% subtr_trans_Un
thf(fact_4_subtr__mono,axiom,
! [Ns: set @ n,Tr1: dtree,Tr2: dtree,Ns2: set @ n] :
( ( gram_L716654942_subtr @ Ns @ Tr1 @ Tr2 )
=> ( ( ord_less_eq @ ( set @ n ) @ Ns @ Ns2 )
=> ( gram_L716654942_subtr @ Ns2 @ Tr1 @ Tr2 ) ) ) ).
% subtr_mono
thf(fact_5_Refl,axiom,
! [Tr: dtree,Ns: set @ n] :
( ( member @ n @ ( root @ Tr ) @ Ns )
=> ( gram_L716654942_subtr @ Ns @ Tr @ Tr ) ) ).
% Refl
thf(fact_6_subtr__rootL__in,axiom,
! [Ns: set @ n,Tr1: dtree,Tr2: dtree] :
( ( gram_L716654942_subtr @ Ns @ Tr1 @ Tr2 )
=> ( member @ n @ ( root @ Tr1 ) @ Ns ) ) ).
% subtr_rootL_in
thf(fact_7_subtr__rootR__in,axiom,
! [Ns: set @ n,Tr1: dtree,Tr2: dtree] :
( ( gram_L716654942_subtr @ Ns @ Tr1 @ Tr2 )
=> ( member @ n @ ( root @ Tr2 ) @ Ns ) ) ).
% subtr_rootR_in
thf(fact_8_Un__subset__iff,axiom,
! [A: $tType,A2: set @ A,B2: set @ A,C: set @ A] :
( ( ord_less_eq @ ( set @ A ) @ ( sup_sup @ ( set @ A ) @ A2 @ B2 ) @ C )
= ( ( ord_less_eq @ ( set @ A ) @ A2 @ C )
& ( ord_less_eq @ ( set @ A ) @ B2 @ C ) ) ) ).
% Un_subset_iff
thf(fact_9_le__sup__iff,axiom,
! [A: $tType] :
( ( semilattice_sup @ A @ ( type2 @ A ) )
=> ! [X: A,Y: A,Z: A] :
( ( ord_less_eq @ A @ ( sup_sup @ A @ X @ Y ) @ Z )
= ( ( ord_less_eq @ A @ X @ Z )
& ( ord_less_eq @ A @ Y @ Z ) ) ) ) ).
% le_sup_iff
thf(fact_10_sup_Obounded__iff,axiom,
! [A: $tType] :
( ( semilattice_sup @ A @ ( type2 @ A ) )
=> ! [B3: A,C2: A,A3: A] :
( ( ord_less_eq @ A @ ( sup_sup @ A @ B3 @ C2 ) @ A3 )
= ( ( ord_less_eq @ A @ B3 @ A3 )
& ( ord_less_eq @ A @ C2 @ A3 ) ) ) ) ).
% sup.bounded_iff
thf(fact_11_UnCI,axiom,
! [A: $tType,C2: A,B2: set @ A,A2: set @ A] :
( ( ~ ( member @ A @ C2 @ B2 )
=> ( member @ A @ C2 @ A2 ) )
=> ( member @ A @ C2 @ ( sup_sup @ ( set @ A ) @ A2 @ B2 ) ) ) ).
% UnCI
thf(fact_12_Un__iff,axiom,
! [A: $tType,C2: A,A2: set @ A,B2: set @ A] :
( ( member @ A @ C2 @ ( sup_sup @ ( set @ A ) @ A2 @ B2 ) )
= ( ( member @ A @ C2 @ A2 )
| ( member @ A @ C2 @ B2 ) ) ) ).
% Un_iff
thf(fact_13_sup__apply,axiom,
! [B: $tType,A: $tType] :
( ( semilattice_sup @ B @ ( type2 @ B ) )
=> ( ( sup_sup @ ( A > B ) )
= ( ^ [F: A > B,G: A > B,X2: A] : ( sup_sup @ B @ ( F @ X2 ) @ ( G @ X2 ) ) ) ) ) ).
% sup_apply
thf(fact_14_sup_Oidem,axiom,
! [A: $tType] :
( ( semilattice_sup @ A @ ( type2 @ A ) )
=> ! [A3: A] :
( ( sup_sup @ A @ A3 @ A3 )
= A3 ) ) ).
% sup.idem
thf(fact_15_sup__idem,axiom,
! [A: $tType] :
( ( semilattice_sup @ A @ ( type2 @ A ) )
=> ! [X: A] :
( ( sup_sup @ A @ X @ X )
= X ) ) ).
% sup_idem
thf(fact_16_sup_Oleft__idem,axiom,
! [A: $tType] :
( ( semilattice_sup @ A @ ( type2 @ A ) )
=> ! [A3: A,B3: A] :
( ( sup_sup @ A @ A3 @ ( sup_sup @ A @ A3 @ B3 ) )
= ( sup_sup @ A @ A3 @ B3 ) ) ) ).
% sup.left_idem
thf(fact_17_sup__left__idem,axiom,
! [A: $tType] :
( ( semilattice_sup @ A @ ( type2 @ A ) )
=> ! [X: A,Y: A] :
( ( sup_sup @ A @ X @ ( sup_sup @ A @ X @ Y ) )
= ( sup_sup @ A @ X @ Y ) ) ) ).
% sup_left_idem
thf(fact_18_sup_Oright__idem,axiom,
! [A: $tType] :
( ( semilattice_sup @ A @ ( type2 @ A ) )
=> ! [A3: A,B3: A] :
( ( sup_sup @ A @ ( sup_sup @ A @ A3 @ B3 ) @ B3 )
= ( sup_sup @ A @ A3 @ B3 ) ) ) ).
% sup.right_idem
thf(fact_19_subset__antisym,axiom,
! [A: $tType,A2: set @ A,B2: set @ A] :
( ( ord_less_eq @ ( set @ A ) @ A2 @ B2 )
=> ( ( ord_less_eq @ ( set @ A ) @ B2 @ A2 )
=> ( A2 = B2 ) ) ) ).
% subset_antisym
thf(fact_20_subsetI,axiom,
! [A: $tType,A2: set @ A,B2: set @ A] :
( ! [X3: A] :
( ( member @ A @ X3 @ A2 )
=> ( member @ A @ X3 @ B2 ) )
=> ( ord_less_eq @ ( set @ A ) @ A2 @ B2 ) ) ).
% subsetI
thf(fact_21_Collect__mono__iff,axiom,
! [A: $tType,P: A > $o,Q: A > $o] :
( ( ord_less_eq @ ( set @ A ) @ ( collect @ A @ P ) @ ( collect @ A @ Q ) )
= ( ! [X2: A] :
( ( P @ X2 )
=> ( Q @ X2 ) ) ) ) ).
% Collect_mono_iff
thf(fact_22_contra__subsetD,axiom,
! [A: $tType,A2: set @ A,B2: set @ A,C2: A] :
( ( ord_less_eq @ ( set @ A ) @ A2 @ B2 )
=> ( ~ ( member @ A @ C2 @ B2 )
=> ~ ( member @ A @ C2 @ A2 ) ) ) ).
% contra_subsetD
thf(fact_23_set__eq__subset,axiom,
! [A: $tType] :
( ( ^ [Y2: set @ A,Z2: set @ A] : ( Y2 = Z2 ) )
= ( ^ [A4: set @ A,B4: set @ A] :
( ( ord_less_eq @ ( set @ A ) @ A4 @ B4 )
& ( ord_less_eq @ ( set @ A ) @ B4 @ A4 ) ) ) ) ).
% set_eq_subset
thf(fact_24_subset__trans,axiom,
! [A: $tType,A2: set @ A,B2: set @ A,C: set @ A] :
( ( ord_less_eq @ ( set @ A ) @ A2 @ B2 )
=> ( ( ord_less_eq @ ( set @ A ) @ B2 @ C )
=> ( ord_less_eq @ ( set @ A ) @ A2 @ C ) ) ) ).
% subset_trans
thf(fact_25_Collect__mono,axiom,
! [A: $tType,P: A > $o,Q: A > $o] :
( ! [X3: A] :
( ( P @ X3 )
=> ( Q @ X3 ) )
=> ( ord_less_eq @ ( set @ A ) @ ( collect @ A @ P ) @ ( collect @ A @ Q ) ) ) ).
% Collect_mono
thf(fact_26_subset__refl,axiom,
! [A: $tType,A2: set @ A] : ( ord_less_eq @ ( set @ A ) @ A2 @ A2 ) ).
% subset_refl
thf(fact_27_rev__subsetD,axiom,
! [A: $tType,C2: A,A2: set @ A,B2: set @ A] :
( ( member @ A @ C2 @ A2 )
=> ( ( ord_less_eq @ ( set @ A ) @ A2 @ B2 )
=> ( member @ A @ C2 @ B2 ) ) ) ).
% rev_subsetD
thf(fact_28_subset__iff,axiom,
! [A: $tType] :
( ( ord_less_eq @ ( set @ A ) )
= ( ^ [A4: set @ A,B4: set @ A] :
! [T: A] :
( ( member @ A @ T @ A4 )
=> ( member @ A @ T @ B4 ) ) ) ) ).
% subset_iff
thf(fact_29_set__rev__mp,axiom,
! [A: $tType,X: A,A2: set @ A,B2: set @ A] :
( ( member @ A @ X @ A2 )
=> ( ( ord_less_eq @ ( set @ A ) @ A2 @ B2 )
=> ( member @ A @ X @ B2 ) ) ) ).
% set_rev_mp
thf(fact_30_equalityD2,axiom,
! [A: $tType,A2: set @ A,B2: set @ A] :
( ( A2 = B2 )
=> ( ord_less_eq @ ( set @ A ) @ B2 @ A2 ) ) ).
% equalityD2
thf(fact_31_equalityD1,axiom,
! [A: $tType,A2: set @ A,B2: set @ A] :
( ( A2 = B2 )
=> ( ord_less_eq @ ( set @ A ) @ A2 @ B2 ) ) ).
% equalityD1
thf(fact_32_subset__eq,axiom,
! [A: $tType] :
( ( ord_less_eq @ ( set @ A ) )
= ( ^ [A4: set @ A,B4: set @ A] :
! [X2: A] :
( ( member @ A @ X2 @ A4 )
=> ( member @ A @ X2 @ B4 ) ) ) ) ).
% subset_eq
thf(fact_33_equalityE,axiom,
! [A: $tType,A2: set @ A,B2: set @ A] :
( ( A2 = B2 )
=> ~ ( ( ord_less_eq @ ( set @ A ) @ A2 @ B2 )
=> ~ ( ord_less_eq @ ( set @ A ) @ B2 @ A2 ) ) ) ).
% equalityE
thf(fact_34_subsetCE,axiom,
! [A: $tType,A2: set @ A,B2: set @ A,C2: A] :
( ( ord_less_eq @ ( set @ A ) @ A2 @ B2 )
=> ( ( member @ A @ C2 @ A2 )
=> ( member @ A @ C2 @ B2 ) ) ) ).
% subsetCE
thf(fact_35_subsetD,axiom,
! [A: $tType,A2: set @ A,B2: set @ A,C2: A] :
( ( ord_less_eq @ ( set @ A ) @ A2 @ B2 )
=> ( ( member @ A @ C2 @ A2 )
=> ( member @ A @ C2 @ B2 ) ) ) ).
% subsetD
thf(fact_36_in__mono,axiom,
! [A: $tType,A2: set @ A,B2: set @ A,X: A] :
( ( ord_less_eq @ ( set @ A ) @ A2 @ B2 )
=> ( ( member @ A @ X @ A2 )
=> ( member @ A @ X @ B2 ) ) ) ).
% in_mono
thf(fact_37_set__mp,axiom,
! [A: $tType,A2: set @ A,B2: set @ A,X: A] :
( ( ord_less_eq @ ( set @ A ) @ A2 @ B2 )
=> ( ( member @ A @ X @ A2 )
=> ( member @ A @ X @ B2 ) ) ) ).
% set_mp
thf(fact_38_sup__left__commute,axiom,
! [A: $tType] :
( ( semilattice_sup @ A @ ( type2 @ A ) )
=> ! [X: A,Y: A,Z: A] :
( ( sup_sup @ A @ X @ ( sup_sup @ A @ Y @ Z ) )
= ( sup_sup @ A @ Y @ ( sup_sup @ A @ X @ Z ) ) ) ) ).
% sup_left_commute
thf(fact_39_sup_Oleft__commute,axiom,
! [A: $tType] :
( ( semilattice_sup @ A @ ( type2 @ A ) )
=> ! [B3: A,A3: A,C2: A] :
( ( sup_sup @ A @ B3 @ ( sup_sup @ A @ A3 @ C2 ) )
= ( sup_sup @ A @ A3 @ ( sup_sup @ A @ B3 @ C2 ) ) ) ) ).
% sup.left_commute
thf(fact_40_sup__commute,axiom,
! [A: $tType] :
( ( semilattice_sup @ A @ ( type2 @ A ) )
=> ( ( sup_sup @ A )
= ( ^ [X2: A,Y3: A] : ( sup_sup @ A @ Y3 @ X2 ) ) ) ) ).
% sup_commute
thf(fact_41_sup_Ocommute,axiom,
! [A: $tType] :
( ( semilattice_sup @ A @ ( type2 @ A ) )
=> ( ( sup_sup @ A )
= ( ^ [A5: A,B5: A] : ( sup_sup @ A @ B5 @ A5 ) ) ) ) ).
% sup.commute
thf(fact_42_sup__assoc,axiom,
! [A: $tType] :
( ( semilattice_sup @ A @ ( type2 @ A ) )
=> ! [X: A,Y: A,Z: A] :
( ( sup_sup @ A @ ( sup_sup @ A @ X @ Y ) @ Z )
= ( sup_sup @ A @ X @ ( sup_sup @ A @ Y @ Z ) ) ) ) ).
% sup_assoc
thf(fact_43_sup_Oassoc,axiom,
! [A: $tType] :
( ( semilattice_sup @ A @ ( type2 @ A ) )
=> ! [A3: A,B3: A,C2: A] :
( ( sup_sup @ A @ ( sup_sup @ A @ A3 @ B3 ) @ C2 )
= ( sup_sup @ A @ A3 @ ( sup_sup @ A @ B3 @ C2 ) ) ) ) ).
% sup.assoc
thf(fact_44_sup__fun__def,axiom,
! [B: $tType,A: $tType] :
( ( semilattice_sup @ B @ ( type2 @ B ) )
=> ( ( sup_sup @ ( A > B ) )
= ( ^ [F: A > B,G: A > B,X2: A] : ( sup_sup @ B @ ( F @ X2 ) @ ( G @ X2 ) ) ) ) ) ).
% sup_fun_def
thf(fact_45_mem__Collect__eq,axiom,
! [A: $tType,A3: A,P: A > $o] :
( ( member @ A @ A3 @ ( collect @ A @ P ) )
= ( P @ A3 ) ) ).
% mem_Collect_eq
thf(fact_46_Collect__mem__eq,axiom,
! [A: $tType,A2: set @ A] :
( ( collect @ A
@ ^ [X2: A] : ( member @ A @ X2 @ A2 ) )
= A2 ) ).
% Collect_mem_eq
thf(fact_47_Collect__cong,axiom,
! [A: $tType,P: A > $o,Q: A > $o] :
( ! [X3: A] :
( ( P @ X3 )
= ( Q @ X3 ) )
=> ( ( collect @ A @ P )
= ( collect @ A @ Q ) ) ) ).
% Collect_cong
thf(fact_48_ext,axiom,
! [B: $tType,A: $tType,F2: A > B,G2: A > B] :
( ! [X3: A] :
( ( F2 @ X3 )
= ( G2 @ X3 ) )
=> ( F2 = G2 ) ) ).
% ext
thf(fact_49_inf__sup__aci_I5_J,axiom,
! [A: $tType] :
( ( lattice @ A @ ( type2 @ A ) )
=> ( ( sup_sup @ A )
= ( ^ [X2: A,Y3: A] : ( sup_sup @ A @ Y3 @ X2 ) ) ) ) ).
% inf_sup_aci(5)
thf(fact_50_inf__sup__aci_I6_J,axiom,
! [A: $tType] :
( ( lattice @ A @ ( type2 @ A ) )
=> ! [X: A,Y: A,Z: A] :
( ( sup_sup @ A @ ( sup_sup @ A @ X @ Y ) @ Z )
= ( sup_sup @ A @ X @ ( sup_sup @ A @ Y @ Z ) ) ) ) ).
% inf_sup_aci(6)
thf(fact_51_inf__sup__aci_I7_J,axiom,
! [A: $tType] :
( ( lattice @ A @ ( type2 @ A ) )
=> ! [X: A,Y: A,Z: A] :
( ( sup_sup @ A @ X @ ( sup_sup @ A @ Y @ Z ) )
= ( sup_sup @ A @ Y @ ( sup_sup @ A @ X @ Z ) ) ) ) ).
% inf_sup_aci(7)
thf(fact_52_inf__sup__aci_I8_J,axiom,
! [A: $tType] :
( ( lattice @ A @ ( type2 @ A ) )
=> ! [X: A,Y: A] :
( ( sup_sup @ A @ X @ ( sup_sup @ A @ X @ Y ) )
= ( sup_sup @ A @ X @ Y ) ) ) ).
% inf_sup_aci(8)
thf(fact_53_Un__left__commute,axiom,
! [A: $tType,A2: set @ A,B2: set @ A,C: set @ A] :
( ( sup_sup @ ( set @ A ) @ A2 @ ( sup_sup @ ( set @ A ) @ B2 @ C ) )
= ( sup_sup @ ( set @ A ) @ B2 @ ( sup_sup @ ( set @ A ) @ A2 @ C ) ) ) ).
% Un_left_commute
thf(fact_54_Un__left__absorb,axiom,
! [A: $tType,A2: set @ A,B2: set @ A] :
( ( sup_sup @ ( set @ A ) @ A2 @ ( sup_sup @ ( set @ A ) @ A2 @ B2 ) )
= ( sup_sup @ ( set @ A ) @ A2 @ B2 ) ) ).
% Un_left_absorb
thf(fact_55_Un__commute,axiom,
! [A: $tType] :
( ( sup_sup @ ( set @ A ) )
= ( ^ [A4: set @ A,B4: set @ A] : ( sup_sup @ ( set @ A ) @ B4 @ A4 ) ) ) ).
% Un_commute
thf(fact_56_Un__absorb,axiom,
! [A: $tType,A2: set @ A] :
( ( sup_sup @ ( set @ A ) @ A2 @ A2 )
= A2 ) ).
% Un_absorb
thf(fact_57_Un__assoc,axiom,
! [A: $tType,A2: set @ A,B2: set @ A,C: set @ A] :
( ( sup_sup @ ( set @ A ) @ ( sup_sup @ ( set @ A ) @ A2 @ B2 ) @ C )
= ( sup_sup @ ( set @ A ) @ A2 @ ( sup_sup @ ( set @ A ) @ B2 @ C ) ) ) ).
% Un_assoc
thf(fact_58_ball__Un,axiom,
! [A: $tType,A2: set @ A,B2: set @ A,P: A > $o] :
( ( ! [X2: A] :
( ( member @ A @ X2 @ ( sup_sup @ ( set @ A ) @ A2 @ B2 ) )
=> ( P @ X2 ) ) )
= ( ! [X2: A] :
( ( member @ A @ X2 @ A2 )
=> ( P @ X2 ) )
& ! [X2: A] :
( ( member @ A @ X2 @ B2 )
=> ( P @ X2 ) ) ) ) ).
% ball_Un
thf(fact_59_bex__Un,axiom,
! [A: $tType,A2: set @ A,B2: set @ A,P: A > $o] :
( ( ? [X2: A] :
( ( member @ A @ X2 @ ( sup_sup @ ( set @ A ) @ A2 @ B2 ) )
& ( P @ X2 ) ) )
= ( ? [X2: A] :
( ( member @ A @ X2 @ A2 )
& ( P @ X2 ) )
| ? [X2: A] :
( ( member @ A @ X2 @ B2 )
& ( P @ X2 ) ) ) ) ).
% bex_Un
thf(fact_60_UnI2,axiom,
! [A: $tType,C2: A,B2: set @ A,A2: set @ A] :
( ( member @ A @ C2 @ B2 )
=> ( member @ A @ C2 @ ( sup_sup @ ( set @ A ) @ A2 @ B2 ) ) ) ).
% UnI2
thf(fact_61_UnI1,axiom,
! [A: $tType,C2: A,A2: set @ A,B2: set @ A] :
( ( member @ A @ C2 @ A2 )
=> ( member @ A @ C2 @ ( sup_sup @ ( set @ A ) @ A2 @ B2 ) ) ) ).
% UnI1
thf(fact_62_UnE,axiom,
! [A: $tType,C2: A,A2: set @ A,B2: set @ A] :
( ( member @ A @ C2 @ ( sup_sup @ ( set @ A ) @ A2 @ B2 ) )
=> ( ~ ( member @ A @ C2 @ A2 )
=> ( member @ A @ C2 @ B2 ) ) ) ).
% UnE
thf(fact_63_sup_OcoboundedI2,axiom,
! [A: $tType] :
( ( semilattice_sup @ A @ ( type2 @ A ) )
=> ! [C2: A,B3: A,A3: A] :
( ( ord_less_eq @ A @ C2 @ B3 )
=> ( ord_less_eq @ A @ C2 @ ( sup_sup @ A @ A3 @ B3 ) ) ) ) ).
% sup.coboundedI2
thf(fact_64_sup_OcoboundedI1,axiom,
! [A: $tType] :
( ( semilattice_sup @ A @ ( type2 @ A ) )
=> ! [C2: A,A3: A,B3: A] :
( ( ord_less_eq @ A @ C2 @ A3 )
=> ( ord_less_eq @ A @ C2 @ ( sup_sup @ A @ A3 @ B3 ) ) ) ) ).
% sup.coboundedI1
thf(fact_65_sup_Oabsorb__iff2,axiom,
! [A: $tType] :
( ( semilattice_sup @ A @ ( type2 @ A ) )
=> ( ( ord_less_eq @ A )
= ( ^ [A5: A,B5: A] :
( ( sup_sup @ A @ A5 @ B5 )
= B5 ) ) ) ) ).
% sup.absorb_iff2
thf(fact_66_sup_Oabsorb__iff1,axiom,
! [A: $tType] :
( ( semilattice_sup @ A @ ( type2 @ A ) )
=> ( ( ord_less_eq @ A )
= ( ^ [B5: A,A5: A] :
( ( sup_sup @ A @ A5 @ B5 )
= A5 ) ) ) ) ).
% sup.absorb_iff1
thf(fact_67_sup_Ocobounded2,axiom,
! [A: $tType] :
( ( semilattice_sup @ A @ ( type2 @ A ) )
=> ! [B3: A,A3: A] : ( ord_less_eq @ A @ B3 @ ( sup_sup @ A @ A3 @ B3 ) ) ) ).
% sup.cobounded2
thf(fact_68_sup_Ocobounded1,axiom,
! [A: $tType] :
( ( semilattice_sup @ A @ ( type2 @ A ) )
=> ! [A3: A,B3: A] : ( ord_less_eq @ A @ A3 @ ( sup_sup @ A @ A3 @ B3 ) ) ) ).
% sup.cobounded1
thf(fact_69_sup_Oorder__iff,axiom,
! [A: $tType] :
( ( semilattice_sup @ A @ ( type2 @ A ) )
=> ( ( ord_less_eq @ A )
= ( ^ [B5: A,A5: A] :
( A5
= ( sup_sup @ A @ A5 @ B5 ) ) ) ) ) ).
% sup.order_iff
thf(fact_70_sup_OboundedI,axiom,
! [A: $tType] :
( ( semilattice_sup @ A @ ( type2 @ A ) )
=> ! [B3: A,A3: A,C2: A] :
( ( ord_less_eq @ A @ B3 @ A3 )
=> ( ( ord_less_eq @ A @ C2 @ A3 )
=> ( ord_less_eq @ A @ ( sup_sup @ A @ B3 @ C2 ) @ A3 ) ) ) ) ).
% sup.boundedI
thf(fact_71_sup_OboundedE,axiom,
! [A: $tType] :
( ( semilattice_sup @ A @ ( type2 @ A ) )
=> ! [B3: A,C2: A,A3: A] :
( ( ord_less_eq @ A @ ( sup_sup @ A @ B3 @ C2 ) @ A3 )
=> ~ ( ( ord_less_eq @ A @ B3 @ A3 )
=> ~ ( ord_less_eq @ A @ C2 @ A3 ) ) ) ) ).
% sup.boundedE
thf(fact_72_sup__absorb2,axiom,
! [A: $tType] :
( ( semilattice_sup @ A @ ( type2 @ A ) )
=> ! [X: A,Y: A] :
( ( ord_less_eq @ A @ X @ Y )
=> ( ( sup_sup @ A @ X @ Y )
= Y ) ) ) ).
% sup_absorb2
thf(fact_73_sup__absorb1,axiom,
! [A: $tType] :
( ( semilattice_sup @ A @ ( type2 @ A ) )
=> ! [Y: A,X: A] :
( ( ord_less_eq @ A @ Y @ X )
=> ( ( sup_sup @ A @ X @ Y )
= X ) ) ) ).
% sup_absorb1
thf(fact_74_sup_Oabsorb2,axiom,
! [A: $tType] :
( ( semilattice_sup @ A @ ( type2 @ A ) )
=> ! [A3: A,B3: A] :
( ( ord_less_eq @ A @ A3 @ B3 )
=> ( ( sup_sup @ A @ A3 @ B3 )
= B3 ) ) ) ).
% sup.absorb2
thf(fact_75_sup_Oabsorb1,axiom,
! [A: $tType] :
( ( semilattice_sup @ A @ ( type2 @ A ) )
=> ! [B3: A,A3: A] :
( ( ord_less_eq @ A @ B3 @ A3 )
=> ( ( sup_sup @ A @ A3 @ B3 )
= A3 ) ) ) ).
% sup.absorb1
thf(fact_76_sup__unique,axiom,
! [A: $tType] :
( ( semilattice_sup @ A @ ( type2 @ A ) )
=> ! [F2: A > A > A,X: A,Y: A] :
( ! [X3: A,Y4: A] : ( ord_less_eq @ A @ X3 @ ( F2 @ X3 @ Y4 ) )
=> ( ! [X3: A,Y4: A] : ( ord_less_eq @ A @ Y4 @ ( F2 @ X3 @ Y4 ) )
=> ( ! [X3: A,Y4: A,Z3: A] :
( ( ord_less_eq @ A @ Y4 @ X3 )
=> ( ( ord_less_eq @ A @ Z3 @ X3 )
=> ( ord_less_eq @ A @ ( F2 @ Y4 @ Z3 ) @ X3 ) ) )
=> ( ( sup_sup @ A @ X @ Y )
= ( F2 @ X @ Y ) ) ) ) ) ) ).
% sup_unique
thf(fact_77_sup_OorderI,axiom,
! [A: $tType] :
( ( semilattice_sup @ A @ ( type2 @ A ) )
=> ! [A3: A,B3: A] :
( ( A3
= ( sup_sup @ A @ A3 @ B3 ) )
=> ( ord_less_eq @ A @ B3 @ A3 ) ) ) ).
% sup.orderI
thf(fact_78_sup_OorderE,axiom,
! [A: $tType] :
( ( semilattice_sup @ A @ ( type2 @ A ) )
=> ! [B3: A,A3: A] :
( ( ord_less_eq @ A @ B3 @ A3 )
=> ( A3
= ( sup_sup @ A @ A3 @ B3 ) ) ) ) ).
% sup.orderE
thf(fact_79_le__iff__sup,axiom,
! [A: $tType] :
( ( semilattice_sup @ A @ ( type2 @ A ) )
=> ( ( ord_less_eq @ A )
= ( ^ [X2: A,Y3: A] :
( ( sup_sup @ A @ X2 @ Y3 )
= Y3 ) ) ) ) ).
% le_iff_sup
thf(fact_80_sup__least,axiom,
! [A: $tType] :
( ( semilattice_sup @ A @ ( type2 @ A ) )
=> ! [Y: A,X: A,Z: A] :
( ( ord_less_eq @ A @ Y @ X )
=> ( ( ord_less_eq @ A @ Z @ X )
=> ( ord_less_eq @ A @ ( sup_sup @ A @ Y @ Z ) @ X ) ) ) ) ).
% sup_least
thf(fact_81_sup__mono,axiom,
! [A: $tType] :
( ( semilattice_sup @ A @ ( type2 @ A ) )
=> ! [A3: A,C2: A,B3: A,D: A] :
( ( ord_less_eq @ A @ A3 @ C2 )
=> ( ( ord_less_eq @ A @ B3 @ D )
=> ( ord_less_eq @ A @ ( sup_sup @ A @ A3 @ B3 ) @ ( sup_sup @ A @ C2 @ D ) ) ) ) ) ).
% sup_mono
thf(fact_82_sup_Omono,axiom,
! [A: $tType] :
( ( semilattice_sup @ A @ ( type2 @ A ) )
=> ! [C2: A,A3: A,D: A,B3: A] :
( ( ord_less_eq @ A @ C2 @ A3 )
=> ( ( ord_less_eq @ A @ D @ B3 )
=> ( ord_less_eq @ A @ ( sup_sup @ A @ C2 @ D ) @ ( sup_sup @ A @ A3 @ B3 ) ) ) ) ) ).
% sup.mono
thf(fact_83_le__supI2,axiom,
! [A: $tType] :
( ( semilattice_sup @ A @ ( type2 @ A ) )
=> ! [X: A,B3: A,A3: A] :
( ( ord_less_eq @ A @ X @ B3 )
=> ( ord_less_eq @ A @ X @ ( sup_sup @ A @ A3 @ B3 ) ) ) ) ).
% le_supI2
thf(fact_84_le__supI1,axiom,
! [A: $tType] :
( ( semilattice_sup @ A @ ( type2 @ A ) )
=> ! [X: A,A3: A,B3: A] :
( ( ord_less_eq @ A @ X @ A3 )
=> ( ord_less_eq @ A @ X @ ( sup_sup @ A @ A3 @ B3 ) ) ) ) ).
% le_supI1
thf(fact_85_sup__ge2,axiom,
! [A: $tType] :
( ( semilattice_sup @ A @ ( type2 @ A ) )
=> ! [Y: A,X: A] : ( ord_less_eq @ A @ Y @ ( sup_sup @ A @ X @ Y ) ) ) ).
% sup_ge2
thf(fact_86_sup__ge1,axiom,
! [A: $tType] :
( ( semilattice_sup @ A @ ( type2 @ A ) )
=> ! [X: A,Y: A] : ( ord_less_eq @ A @ X @ ( sup_sup @ A @ X @ Y ) ) ) ).
% sup_ge1
thf(fact_87_le__supI,axiom,
! [A: $tType] :
( ( semilattice_sup @ A @ ( type2 @ A ) )
=> ! [A3: A,X: A,B3: A] :
( ( ord_less_eq @ A @ A3 @ X )
=> ( ( ord_less_eq @ A @ B3 @ X )
=> ( ord_less_eq @ A @ ( sup_sup @ A @ A3 @ B3 ) @ X ) ) ) ) ).
% le_supI
thf(fact_88_le__supE,axiom,
! [A: $tType] :
( ( semilattice_sup @ A @ ( type2 @ A ) )
=> ! [A3: A,B3: A,X: A] :
( ( ord_less_eq @ A @ ( sup_sup @ A @ A3 @ B3 ) @ X )
=> ~ ( ( ord_less_eq @ A @ A3 @ X )
=> ~ ( ord_less_eq @ A @ B3 @ X ) ) ) ) ).
% le_supE
thf(fact_89_inf__sup__ord_I3_J,axiom,
! [A: $tType] :
( ( lattice @ A @ ( type2 @ A ) )
=> ! [X: A,Y: A] : ( ord_less_eq @ A @ X @ ( sup_sup @ A @ X @ Y ) ) ) ).
% inf_sup_ord(3)
thf(fact_90_inf__sup__ord_I4_J,axiom,
! [A: $tType] :
( ( lattice @ A @ ( type2 @ A ) )
=> ! [Y: A,X: A] : ( ord_less_eq @ A @ Y @ ( sup_sup @ A @ X @ Y ) ) ) ).
% inf_sup_ord(4)
thf(fact_91_subset__Un__eq,axiom,
! [A: $tType] :
( ( ord_less_eq @ ( set @ A ) )
= ( ^ [A4: set @ A,B4: set @ A] :
( ( sup_sup @ ( set @ A ) @ A4 @ B4 )
= B4 ) ) ) ).
% subset_Un_eq
thf(fact_92_Un__absorb2,axiom,
! [A: $tType,B2: set @ A,A2: set @ A] :
( ( ord_less_eq @ ( set @ A ) @ B2 @ A2 )
=> ( ( sup_sup @ ( set @ A ) @ A2 @ B2 )
= A2 ) ) ).
% Un_absorb2
thf(fact_93_Un__absorb1,axiom,
! [A: $tType,A2: set @ A,B2: set @ A] :
( ( ord_less_eq @ ( set @ A ) @ A2 @ B2 )
=> ( ( sup_sup @ ( set @ A ) @ A2 @ B2 )
= B2 ) ) ).
% Un_absorb1
thf(fact_94_Un__upper2,axiom,
! [A: $tType,B2: set @ A,A2: set @ A] : ( ord_less_eq @ ( set @ A ) @ B2 @ ( sup_sup @ ( set @ A ) @ A2 @ B2 ) ) ).
% Un_upper2
thf(fact_95_Un__upper1,axiom,
! [A: $tType,A2: set @ A,B2: set @ A] : ( ord_less_eq @ ( set @ A ) @ A2 @ ( sup_sup @ ( set @ A ) @ A2 @ B2 ) ) ).
% Un_upper1
thf(fact_96_Un__least,axiom,
! [A: $tType,A2: set @ A,C: set @ A,B2: set @ A] :
( ( ord_less_eq @ ( set @ A ) @ A2 @ C )
=> ( ( ord_less_eq @ ( set @ A ) @ B2 @ C )
=> ( ord_less_eq @ ( set @ A ) @ ( sup_sup @ ( set @ A ) @ A2 @ B2 ) @ C ) ) ) ).
% Un_least
thf(fact_97_Un__mono,axiom,
! [A: $tType,A2: set @ A,C: set @ A,B2: set @ A,D2: set @ A] :
( ( ord_less_eq @ ( set @ A ) @ A2 @ C )
=> ( ( ord_less_eq @ ( set @ A ) @ B2 @ D2 )
=> ( ord_less_eq @ ( set @ A ) @ ( sup_sup @ ( set @ A ) @ A2 @ B2 ) @ ( sup_sup @ ( set @ A ) @ C @ D2 ) ) ) ) ).
% Un_mono
thf(fact_98_order__refl,axiom,
! [A: $tType] :
( ( preorder @ A @ ( type2 @ A ) )
=> ! [X: A] : ( ord_less_eq @ A @ X @ X ) ) ).
% order_refl
thf(fact_99_dual__order_Oantisym,axiom,
! [A: $tType] :
( ( order @ A @ ( type2 @ A ) )
=> ! [B3: A,A3: A] :
( ( ord_less_eq @ A @ B3 @ A3 )
=> ( ( ord_less_eq @ A @ A3 @ B3 )
=> ( A3 = B3 ) ) ) ) ).
% dual_order.antisym
thf(fact_100_dual__order_Otrans,axiom,
! [A: $tType] :
( ( order @ A @ ( type2 @ A ) )
=> ! [B3: A,A3: A,C2: A] :
( ( ord_less_eq @ A @ B3 @ A3 )
=> ( ( ord_less_eq @ A @ C2 @ B3 )
=> ( ord_less_eq @ A @ C2 @ A3 ) ) ) ) ).
% dual_order.trans
thf(fact_101_linorder__wlog,axiom,
! [A: $tType] :
( ( linorder @ A @ ( type2 @ A ) )
=> ! [P: A > A > $o,A3: A,B3: A] :
( ! [A6: A,B6: A] :
( ( ord_less_eq @ A @ A6 @ B6 )
=> ( P @ A6 @ B6 ) )
=> ( ! [A6: A,B6: A] :
( ( P @ B6 @ A6 )
=> ( P @ A6 @ B6 ) )
=> ( P @ A3 @ B3 ) ) ) ) ).
% linorder_wlog
thf(fact_102_dual__order_Orefl,axiom,
! [A: $tType] :
( ( order @ A @ ( type2 @ A ) )
=> ! [A3: A] : ( ord_less_eq @ A @ A3 @ A3 ) ) ).
% dual_order.refl
thf(fact_103_order__trans,axiom,
! [A: $tType] :
( ( preorder @ A @ ( type2 @ A ) )
=> ! [X: A,Y: A,Z: A] :
( ( ord_less_eq @ A @ X @ Y )
=> ( ( ord_less_eq @ A @ Y @ Z )
=> ( ord_less_eq @ A @ X @ Z ) ) ) ) ).
% order_trans
thf(fact_104_order__class_Oorder_Oantisym,axiom,
! [A: $tType] :
( ( order @ A @ ( type2 @ A ) )
=> ! [A3: A,B3: A] :
( ( ord_less_eq @ A @ A3 @ B3 )
=> ( ( ord_less_eq @ A @ B3 @ A3 )
=> ( A3 = B3 ) ) ) ) ).
% order_class.order.antisym
thf(fact_105_ord__le__eq__trans,axiom,
! [A: $tType] :
( ( ord @ A @ ( type2 @ A ) )
=> ! [A3: A,B3: A,C2: A] :
( ( ord_less_eq @ A @ A3 @ B3 )
=> ( ( B3 = C2 )
=> ( ord_less_eq @ A @ A3 @ C2 ) ) ) ) ).
% ord_le_eq_trans
thf(fact_106_ord__eq__le__trans,axiom,
! [A: $tType] :
( ( ord @ A @ ( type2 @ A ) )
=> ! [A3: A,B3: A,C2: A] :
( ( A3 = B3 )
=> ( ( ord_less_eq @ A @ B3 @ C2 )
=> ( ord_less_eq @ A @ A3 @ C2 ) ) ) ) ).
% ord_eq_le_trans
thf(fact_107_antisym__conv,axiom,
! [A: $tType] :
( ( order @ A @ ( type2 @ A ) )
=> ! [Y: A,X: A] :
( ( ord_less_eq @ A @ Y @ X )
=> ( ( ord_less_eq @ A @ X @ Y )
= ( X = Y ) ) ) ) ).
% antisym_conv
thf(fact_108_le__funD,axiom,
! [B: $tType,A: $tType] :
( ( ord @ B @ ( type2 @ B ) )
=> ! [F2: A > B,G2: A > B,X: A] :
( ( ord_less_eq @ ( A > B ) @ F2 @ G2 )
=> ( ord_less_eq @ B @ ( F2 @ X ) @ ( G2 @ X ) ) ) ) ).
% le_funD
thf(fact_109_le__funE,axiom,
! [B: $tType,A: $tType] :
( ( ord @ B @ ( type2 @ B ) )
=> ! [F2: A > B,G2: A > B,X: A] :
( ( ord_less_eq @ ( A > B ) @ F2 @ G2 )
=> ( ord_less_eq @ B @ ( F2 @ X ) @ ( G2 @ X ) ) ) ) ).
% le_funE
thf(fact_110_le__funI,axiom,
! [B: $tType,A: $tType] :
( ( ord @ B @ ( type2 @ B ) )
=> ! [F2: A > B,G2: A > B] :
( ! [X3: A] : ( ord_less_eq @ B @ ( F2 @ X3 ) @ ( G2 @ X3 ) )
=> ( ord_less_eq @ ( A > B ) @ F2 @ G2 ) ) ) ).
% le_funI
thf(fact_111_le__fun__def,axiom,
! [B: $tType,A: $tType] :
( ( ord @ B @ ( type2 @ B ) )
=> ( ( ord_less_eq @ ( A > B ) )
= ( ^ [F: A > B,G: A > B] :
! [X2: A] : ( ord_less_eq @ B @ ( F @ X2 ) @ ( G @ X2 ) ) ) ) ) ).
% le_fun_def
thf(fact_112_order__subst1,axiom,
! [A: $tType,B: $tType] :
( ( ( order @ B @ ( type2 @ B ) )
& ( order @ A @ ( type2 @ A ) ) )
=> ! [A3: A,F2: B > A,B3: B,C2: B] :
( ( ord_less_eq @ A @ A3 @ ( F2 @ B3 ) )
=> ( ( ord_less_eq @ B @ B3 @ C2 )
=> ( ! [X3: B,Y4: B] :
( ( ord_less_eq @ B @ X3 @ Y4 )
=> ( ord_less_eq @ A @ ( F2 @ X3 ) @ ( F2 @ Y4 ) ) )
=> ( ord_less_eq @ A @ A3 @ ( F2 @ C2 ) ) ) ) ) ) ).
% order_subst1
thf(fact_113_order__subst2,axiom,
! [A: $tType,C3: $tType] :
( ( ( order @ C3 @ ( type2 @ C3 ) )
& ( order @ A @ ( type2 @ A ) ) )
=> ! [A3: A,B3: A,F2: A > C3,C2: C3] :
( ( ord_less_eq @ A @ A3 @ B3 )
=> ( ( ord_less_eq @ C3 @ ( F2 @ B3 ) @ C2 )
=> ( ! [X3: A,Y4: A] :
( ( ord_less_eq @ A @ X3 @ Y4 )
=> ( ord_less_eq @ C3 @ ( F2 @ X3 ) @ ( F2 @ Y4 ) ) )
=> ( ord_less_eq @ C3 @ ( F2 @ A3 ) @ C2 ) ) ) ) ) ).
% order_subst2
thf(fact_114_ord__eq__le__subst,axiom,
! [A: $tType,B: $tType] :
( ( ( ord @ B @ ( type2 @ B ) )
& ( ord @ A @ ( type2 @ A ) ) )
=> ! [A3: A,F2: B > A,B3: B,C2: B] :
( ( A3
= ( F2 @ B3 ) )
=> ( ( ord_less_eq @ B @ B3 @ C2 )
=> ( ! [X3: B,Y4: B] :
( ( ord_less_eq @ B @ X3 @ Y4 )
=> ( ord_less_eq @ A @ ( F2 @ X3 ) @ ( F2 @ Y4 ) ) )
=> ( ord_less_eq @ A @ A3 @ ( F2 @ C2 ) ) ) ) ) ) ).
% ord_eq_le_subst
thf(fact_115_ord__le__eq__subst,axiom,
! [A: $tType,B: $tType] :
( ( ( ord @ B @ ( type2 @ B ) )
& ( ord @ A @ ( type2 @ A ) ) )
=> ! [A3: A,B3: A,F2: A > B,C2: B] :
( ( ord_less_eq @ A @ A3 @ B3 )
=> ( ( ( F2 @ B3 )
= C2 )
=> ( ! [X3: A,Y4: A] :
( ( ord_less_eq @ A @ X3 @ Y4 )
=> ( ord_less_eq @ B @ ( F2 @ X3 ) @ ( F2 @ Y4 ) ) )
=> ( ord_less_eq @ B @ ( F2 @ A3 ) @ C2 ) ) ) ) ) ).
% ord_le_eq_subst
thf(fact_116_eq__iff,axiom,
! [A: $tType] :
( ( order @ A @ ( type2 @ A ) )
=> ( ( ^ [Y2: A,Z2: A] : ( Y2 = Z2 ) )
= ( ^ [X2: A,Y3: A] :
( ( ord_less_eq @ A @ X2 @ Y3 )
& ( ord_less_eq @ A @ Y3 @ X2 ) ) ) ) ) ).
% eq_iff
thf(fact_117_antisym,axiom,
! [A: $tType] :
( ( order @ A @ ( type2 @ A ) )
=> ! [X: A,Y: A] :
( ( ord_less_eq @ A @ X @ Y )
=> ( ( ord_less_eq @ A @ Y @ X )
=> ( X = Y ) ) ) ) ).
% antisym
thf(fact_118_linear,axiom,
! [A: $tType] :
( ( linorder @ A @ ( type2 @ A ) )
=> ! [X: A,Y: A] :
( ( ord_less_eq @ A @ X @ Y )
| ( ord_less_eq @ A @ Y @ X ) ) ) ).
% linear
thf(fact_119_eq__refl,axiom,
! [A: $tType] :
( ( preorder @ A @ ( type2 @ A ) )
=> ! [X: A,Y: A] :
( ( X = Y )
=> ( ord_less_eq @ A @ X @ Y ) ) ) ).
% eq_refl
thf(fact_120_le__cases,axiom,
! [A: $tType] :
( ( linorder @ A @ ( type2 @ A ) )
=> ! [X: A,Y: A] :
( ~ ( ord_less_eq @ A @ X @ Y )
=> ( ord_less_eq @ A @ Y @ X ) ) ) ).
% le_cases
thf(fact_121_order_Otrans,axiom,
! [A: $tType] :
( ( order @ A @ ( type2 @ A ) )
=> ! [A3: A,B3: A,C2: A] :
( ( ord_less_eq @ A @ A3 @ B3 )
=> ( ( ord_less_eq @ A @ B3 @ C2 )
=> ( ord_less_eq @ A @ A3 @ C2 ) ) ) ) ).
% order.trans
thf(fact_122_le__cases3,axiom,
! [A: $tType] :
( ( linorder @ A @ ( type2 @ A ) )
=> ! [X: A,Y: A,Z: A] :
( ( ( ord_less_eq @ A @ X @ Y )
=> ~ ( ord_less_eq @ A @ Y @ Z ) )
=> ( ( ( ord_less_eq @ A @ Y @ X )
=> ~ ( ord_less_eq @ A @ X @ Z ) )
=> ( ( ( ord_less_eq @ A @ X @ Z )
=> ~ ( ord_less_eq @ A @ Z @ Y ) )
=> ( ( ( ord_less_eq @ A @ Z @ Y )
=> ~ ( ord_less_eq @ A @ Y @ X ) )
=> ( ( ( ord_less_eq @ A @ Y @ Z )
=> ~ ( ord_less_eq @ A @ Z @ X ) )
=> ~ ( ( ord_less_eq @ A @ Z @ X )
=> ~ ( ord_less_eq @ A @ X @ Y ) ) ) ) ) ) ) ) ).
% le_cases3
thf(fact_123_inItr__mono,axiom,
! [Ns: set @ n,Tr: dtree,N: n,Ns2: set @ n] :
( ( gram_L830233218_inItr @ Ns @ Tr @ N )
=> ( ( ord_less_eq @ ( set @ n ) @ Ns @ Ns2 )
=> ( gram_L830233218_inItr @ Ns2 @ Tr @ N ) ) ) ).
% inItr_mono
thf(fact_124_inFr2__mono,axiom,
! [Ns: set @ n,Tr: dtree,T2: t,Ns2: set @ n] :
( ( gram_L805317441_inFr2 @ Ns @ Tr @ T2 )
=> ( ( ord_less_eq @ ( set @ n ) @ Ns @ Ns2 )
=> ( gram_L805317441_inFr2 @ Ns2 @ Tr @ T2 ) ) ) ).
% inFr2_mono
thf(fact_125_inFr__mono,axiom,
! [Ns: set @ n,Tr: dtree,T2: t,Ns2: set @ n] :
( ( gram_L1333338417e_inFr @ Ns @ Tr @ T2 )
=> ( ( ord_less_eq @ ( set @ n ) @ Ns @ Ns2 )
=> ( gram_L1333338417e_inFr @ Ns2 @ Tr @ T2 ) ) ) ).
% inFr_mono
thf(fact_126_antimonoD,axiom,
! [B: $tType,A: $tType] :
( ( ( order @ A @ ( type2 @ A ) )
& ( order @ B @ ( type2 @ B ) ) )
=> ! [F2: A > B,X: A,Y: A] :
( ( order_antimono @ A @ B @ F2 )
=> ( ( ord_less_eq @ A @ X @ Y )
=> ( ord_less_eq @ B @ ( F2 @ Y ) @ ( F2 @ X ) ) ) ) ) ).
% antimonoD
thf(fact_127_antimonoE,axiom,
! [B: $tType,A: $tType] :
( ( ( order @ A @ ( type2 @ A ) )
& ( order @ B @ ( type2 @ B ) ) )
=> ! [F2: A > B,X: A,Y: A] :
( ( order_antimono @ A @ B @ F2 )
=> ( ( ord_less_eq @ A @ X @ Y )
=> ( ord_less_eq @ B @ ( F2 @ Y ) @ ( F2 @ X ) ) ) ) ) ).
% antimonoE
thf(fact_128_inFr__inFr2,axiom,
gram_L1333338417e_inFr = gram_L805317441_inFr2 ).
% inFr_inFr2
thf(fact_129_not__root__inFr,axiom,
! [Tr: dtree,Ns: set @ n,T2: t] :
( ~ ( member @ n @ ( root @ Tr ) @ Ns )
=> ~ ( gram_L1333338417e_inFr @ Ns @ Tr @ T2 ) ) ).
% not_root_inFr
thf(fact_130_inFr__root__in,axiom,
! [Ns: set @ n,Tr: dtree,T2: t] :
( ( gram_L1333338417e_inFr @ Ns @ Tr @ T2 )
=> ( member @ n @ ( root @ Tr ) @ Ns ) ) ).
% inFr_root_in
thf(fact_131_inFr2__root__in,axiom,
! [Ns: set @ n,Tr: dtree,T2: t] :
( ( gram_L805317441_inFr2 @ Ns @ Tr @ T2 )
=> ( member @ n @ ( root @ Tr ) @ Ns ) ) ).
% inFr2_root_in
thf(fact_132_inItr__root__in,axiom,
! [Ns: set @ n,Tr: dtree,N: n] :
( ( gram_L830233218_inItr @ Ns @ Tr @ N )
=> ( member @ n @ ( root @ Tr ) @ Ns ) ) ).
% inItr_root_in
thf(fact_133_inItr_OBase,axiom,
! [Tr: dtree,Ns: set @ n] :
( ( member @ n @ ( root @ Tr ) @ Ns )
=> ( gram_L830233218_inItr @ Ns @ Tr @ ( root @ Tr ) ) ) ).
% inItr.Base
thf(fact_134_antimono__def,axiom,
! [B: $tType,A: $tType] :
( ( ( order @ A @ ( type2 @ A ) )
& ( order @ B @ ( type2 @ B ) ) )
=> ( ( order_antimono @ A @ B )
= ( ^ [F: A > B] :
! [X2: A,Y3: A] :
( ( ord_less_eq @ A @ X2 @ Y3 )
=> ( ord_less_eq @ B @ ( F @ Y3 ) @ ( F @ X2 ) ) ) ) ) ) ).
% antimono_def
thf(fact_135_antimonoI,axiom,
! [B: $tType,A: $tType] :
( ( ( order @ A @ ( type2 @ A ) )
& ( order @ B @ ( type2 @ B ) ) )
=> ! [F2: A > B] :
( ! [X3: A,Y4: A] :
( ( ord_less_eq @ A @ X3 @ Y4 )
=> ( ord_less_eq @ B @ ( F2 @ Y4 ) @ ( F2 @ X3 ) ) )
=> ( order_antimono @ A @ B @ F2 ) ) ) ).
% antimonoI
thf(fact_136_strict__mono__less__eq,axiom,
! [B: $tType,A: $tType] :
( ( ( linorder @ A @ ( type2 @ A ) )
& ( order @ B @ ( type2 @ B ) ) )
=> ! [F2: A > B,X: A,Y: A] :
( ( order_strict_mono @ A @ B @ F2 )
=> ( ( ord_less_eq @ B @ ( F2 @ X ) @ ( F2 @ Y ) )
= ( ord_less_eq @ A @ X @ Y ) ) ) ) ).
% strict_mono_less_eq
thf(fact_137_pairwise__subset,axiom,
! [A: $tType,P: A > A > $o,S: set @ A,T3: set @ A] :
( ( pairwise @ A @ P @ S )
=> ( ( ord_less_eq @ ( set @ A ) @ T3 @ S )
=> ( pairwise @ A @ P @ T3 ) ) ) ).
% pairwise_subset
thf(fact_138_Diff__subset__conv,axiom,
! [A: $tType,A2: set @ A,B2: set @ A,C: set @ A] :
( ( ord_less_eq @ ( set @ A ) @ ( minus_minus @ ( set @ A ) @ A2 @ B2 ) @ C )
= ( ord_less_eq @ ( set @ A ) @ A2 @ ( sup_sup @ ( set @ A ) @ B2 @ C ) ) ) ).
% Diff_subset_conv
thf(fact_139_Diff__partition,axiom,
! [A: $tType,A2: set @ A,B2: set @ A] :
( ( ord_less_eq @ ( set @ A ) @ A2 @ B2 )
=> ( ( sup_sup @ ( set @ A ) @ A2 @ ( minus_minus @ ( set @ A ) @ B2 @ A2 ) )
= B2 ) ) ).
% Diff_partition
thf(fact_140_minus__apply,axiom,
! [B: $tType,A: $tType] :
( ( minus @ B @ ( type2 @ B ) )
=> ( ( minus_minus @ ( A > B ) )
= ( ^ [A4: A > B,B4: A > B,X2: A] : ( minus_minus @ B @ ( A4 @ X2 ) @ ( B4 @ X2 ) ) ) ) ) ).
% minus_apply
thf(fact_141_Diff__idemp,axiom,
! [A: $tType,A2: set @ A,B2: set @ A] :
( ( minus_minus @ ( set @ A ) @ ( minus_minus @ ( set @ A ) @ A2 @ B2 ) @ B2 )
= ( minus_minus @ ( set @ A ) @ A2 @ B2 ) ) ).
% Diff_idemp
thf(fact_142_Diff__iff,axiom,
! [A: $tType,C2: A,A2: set @ A,B2: set @ A] :
( ( member @ A @ C2 @ ( minus_minus @ ( set @ A ) @ A2 @ B2 ) )
= ( ( member @ A @ C2 @ A2 )
& ~ ( member @ A @ C2 @ B2 ) ) ) ).
% Diff_iff
thf(fact_143_DiffI,axiom,
! [A: $tType,C2: A,A2: set @ A,B2: set @ A] :
( ( member @ A @ C2 @ A2 )
=> ( ~ ( member @ A @ C2 @ B2 )
=> ( member @ A @ C2 @ ( minus_minus @ ( set @ A ) @ A2 @ B2 ) ) ) ) ).
% DiffI
thf(fact_144_Un__Diff__cancel2,axiom,
! [A: $tType,B2: set @ A,A2: set @ A] :
( ( sup_sup @ ( set @ A ) @ ( minus_minus @ ( set @ A ) @ B2 @ A2 ) @ A2 )
= ( sup_sup @ ( set @ A ) @ B2 @ A2 ) ) ).
% Un_Diff_cancel2
thf(fact_145_Un__Diff__cancel,axiom,
! [A: $tType,A2: set @ A,B2: set @ A] :
( ( sup_sup @ ( set @ A ) @ A2 @ ( minus_minus @ ( set @ A ) @ B2 @ A2 ) )
= ( sup_sup @ ( set @ A ) @ A2 @ B2 ) ) ).
% Un_Diff_cancel
thf(fact_146_Diff__mono,axiom,
! [A: $tType,A2: set @ A,C: set @ A,D2: set @ A,B2: set @ A] :
( ( ord_less_eq @ ( set @ A ) @ A2 @ C )
=> ( ( ord_less_eq @ ( set @ A ) @ D2 @ B2 )
=> ( ord_less_eq @ ( set @ A ) @ ( minus_minus @ ( set @ A ) @ A2 @ B2 ) @ ( minus_minus @ ( set @ A ) @ C @ D2 ) ) ) ) ).
% Diff_mono
thf(fact_147_Diff__subset,axiom,
! [A: $tType,A2: set @ A,B2: set @ A] : ( ord_less_eq @ ( set @ A ) @ ( minus_minus @ ( set @ A ) @ A2 @ B2 ) @ A2 ) ).
% Diff_subset
thf(fact_148_double__diff,axiom,
! [A: $tType,A2: set @ A,B2: set @ A,C: set @ A] :
( ( ord_less_eq @ ( set @ A ) @ A2 @ B2 )
=> ( ( ord_less_eq @ ( set @ A ) @ B2 @ C )
=> ( ( minus_minus @ ( set @ A ) @ B2 @ ( minus_minus @ ( set @ A ) @ C @ A2 ) )
= A2 ) ) ) ).
% double_diff
thf(fact_149_fun__diff__def,axiom,
! [B: $tType,A: $tType] :
( ( minus @ B @ ( type2 @ B ) )
=> ( ( minus_minus @ ( A > B ) )
= ( ^ [A4: A > B,B4: A > B,X2: A] : ( minus_minus @ B @ ( A4 @ X2 ) @ ( B4 @ X2 ) ) ) ) ) ).
% fun_diff_def
thf(fact_150_pairwise__def,axiom,
! [A: $tType] :
( ( pairwise @ A )
= ( ^ [R: A > A > $o,S2: set @ A] :
! [X2: A] :
( ( member @ A @ X2 @ S2 )
=> ! [Y3: A] :
( ( member @ A @ Y3 @ S2 )
=> ( ( X2 != Y3 )
=> ( R @ X2 @ Y3 ) ) ) ) ) ) ).
% pairwise_def
thf(fact_151_DiffD2,axiom,
! [A: $tType,C2: A,A2: set @ A,B2: set @ A] :
( ( member @ A @ C2 @ ( minus_minus @ ( set @ A ) @ A2 @ B2 ) )
=> ~ ( member @ A @ C2 @ B2 ) ) ).
% DiffD2
thf(fact_152_DiffD1,axiom,
! [A: $tType,C2: A,A2: set @ A,B2: set @ A] :
( ( member @ A @ C2 @ ( minus_minus @ ( set @ A ) @ A2 @ B2 ) )
=> ( member @ A @ C2 @ A2 ) ) ).
% DiffD1
thf(fact_153_DiffE,axiom,
! [A: $tType,C2: A,A2: set @ A,B2: set @ A] :
( ( member @ A @ C2 @ ( minus_minus @ ( set @ A ) @ A2 @ B2 ) )
=> ~ ( ( member @ A @ C2 @ A2 )
=> ( member @ A @ C2 @ B2 ) ) ) ).
% DiffE
thf(fact_154_Un__Diff,axiom,
! [A: $tType,A2: set @ A,B2: set @ A,C: set @ A] :
( ( minus_minus @ ( set @ A ) @ ( sup_sup @ ( set @ A ) @ A2 @ B2 ) @ C )
= ( sup_sup @ ( set @ A ) @ ( minus_minus @ ( set @ A ) @ A2 @ C ) @ ( minus_minus @ ( set @ A ) @ B2 @ C ) ) ) ).
% Un_Diff
thf(fact_155_strict__mono__eq,axiom,
! [B: $tType,A: $tType] :
( ( ( linorder @ A @ ( type2 @ A ) )
& ( order @ B @ ( type2 @ B ) ) )
=> ! [F2: A > B,X: A,Y: A] :
( ( order_strict_mono @ A @ B @ F2 )
=> ( ( ( F2 @ X )
= ( F2 @ Y ) )
= ( X = Y ) ) ) ) ).
% strict_mono_eq
thf(fact_156_diff__mono,axiom,
! [A: $tType] :
( ( ordered_ab_group_add @ A @ ( type2 @ A ) )
=> ! [A3: A,B3: A,D: A,C2: A] :
( ( ord_less_eq @ A @ A3 @ B3 )
=> ( ( ord_less_eq @ A @ D @ C2 )
=> ( ord_less_eq @ A @ ( minus_minus @ A @ A3 @ C2 ) @ ( minus_minus @ A @ B3 @ D ) ) ) ) ) ).
% diff_mono
thf(fact_157_diff__left__mono,axiom,
! [A: $tType] :
( ( ordered_ab_group_add @ A @ ( type2 @ A ) )
=> ! [B3: A,A3: A,C2: A] :
( ( ord_less_eq @ A @ B3 @ A3 )
=> ( ord_less_eq @ A @ ( minus_minus @ A @ C2 @ A3 ) @ ( minus_minus @ A @ C2 @ B3 ) ) ) ) ).
% diff_left_mono
thf(fact_158_diff__right__mono,axiom,
! [A: $tType] :
( ( ordered_ab_group_add @ A @ ( type2 @ A ) )
=> ! [A3: A,B3: A,C2: A] :
( ( ord_less_eq @ A @ A3 @ B3 )
=> ( ord_less_eq @ A @ ( minus_minus @ A @ A3 @ C2 ) @ ( minus_minus @ A @ B3 @ C2 ) ) ) ) ).
% diff_right_mono
thf(fact_159_diff__eq__diff__less__eq,axiom,
! [A: $tType] :
( ( ordered_ab_group_add @ A @ ( type2 @ A ) )
=> ! [A3: A,B3: A,C2: A,D: A] :
( ( ( minus_minus @ A @ A3 @ B3 )
= ( minus_minus @ A @ C2 @ D ) )
=> ( ( ord_less_eq @ A @ A3 @ B3 )
= ( ord_less_eq @ A @ C2 @ D ) ) ) ) ).
% diff_eq_diff_less_eq
thf(fact_160_diff__right__commute,axiom,
! [A: $tType] :
( ( cancel146912293up_add @ A @ ( type2 @ A ) )
=> ! [A3: A,C2: A,B3: A] :
( ( minus_minus @ A @ ( minus_minus @ A @ A3 @ C2 ) @ B3 )
= ( minus_minus @ A @ ( minus_minus @ A @ A3 @ B3 ) @ C2 ) ) ) ).
% diff_right_commute
thf(fact_161_diff__eq__diff__eq,axiom,
! [A: $tType] :
( ( group_add @ A @ ( type2 @ A ) )
=> ! [A3: A,B3: A,C2: A,D: A] :
( ( ( minus_minus @ A @ A3 @ B3 )
= ( minus_minus @ A @ C2 @ D ) )
=> ( ( A3 = B3 )
= ( C2 = D ) ) ) ) ).
% diff_eq_diff_eq
thf(fact_162_Diff__eq__empty__iff,axiom,
! [A: $tType,A2: set @ A,B2: set @ A] :
( ( ( minus_minus @ ( set @ A ) @ A2 @ B2 )
= ( bot_bot @ ( set @ A ) ) )
= ( ord_less_eq @ ( set @ A ) @ A2 @ B2 ) ) ).
% Diff_eq_empty_iff
thf(fact_163_diff__ge__0__iff__ge,axiom,
! [A: $tType] :
( ( ordered_ab_group_add @ A @ ( type2 @ A ) )
=> ! [A3: A,B3: A] :
( ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( minus_minus @ A @ A3 @ B3 ) )
= ( ord_less_eq @ A @ B3 @ A3 ) ) ) ).
% diff_ge_0_iff_ge
thf(fact_164_Compl__Diff__eq,axiom,
! [A: $tType,A2: set @ A,B2: set @ A] :
( ( uminus_uminus @ ( set @ A ) @ ( minus_minus @ ( set @ A ) @ A2 @ B2 ) )
= ( sup_sup @ ( set @ A ) @ ( uminus_uminus @ ( set @ A ) @ A2 ) @ B2 ) ) ).
% Compl_Diff_eq
thf(fact_165_bot__apply,axiom,
! [C3: $tType,D3: $tType] :
( ( bot @ C3 @ ( type2 @ C3 ) )
=> ( ( bot_bot @ ( D3 > C3 ) )
= ( ^ [X2: D3] : ( bot_bot @ C3 ) ) ) ) ).
% bot_apply
thf(fact_166_empty__Collect__eq,axiom,
! [A: $tType,P: A > $o] :
( ( ( bot_bot @ ( set @ A ) )
= ( collect @ A @ P ) )
= ( ! [X2: A] :
~ ( P @ X2 ) ) ) ).
% empty_Collect_eq
thf(fact_167_Collect__empty__eq,axiom,
! [A: $tType,P: A > $o] :
( ( ( collect @ A @ P )
= ( bot_bot @ ( set @ A ) ) )
= ( ! [X2: A] :
~ ( P @ X2 ) ) ) ).
% Collect_empty_eq
thf(fact_168_all__not__in__conv,axiom,
! [A: $tType,A2: set @ A] :
( ( ! [X2: A] :
~ ( member @ A @ X2 @ A2 ) )
= ( A2
= ( bot_bot @ ( set @ A ) ) ) ) ).
% all_not_in_conv
thf(fact_169_empty__iff,axiom,
! [A: $tType,C2: A] :
~ ( member @ A @ C2 @ ( bot_bot @ ( set @ A ) ) ) ).
% empty_iff
thf(fact_170_compl__eq__compl__iff,axiom,
! [A: $tType] :
( ( boolean_algebra @ A @ ( type2 @ A ) )
=> ! [X: A,Y: A] :
( ( ( uminus_uminus @ A @ X )
= ( uminus_uminus @ A @ Y ) )
= ( X = Y ) ) ) ).
% compl_eq_compl_iff
thf(fact_171_double__compl,axiom,
! [A: $tType] :
( ( boolean_algebra @ A @ ( type2 @ A ) )
=> ! [X: A] :
( ( uminus_uminus @ A @ ( uminus_uminus @ A @ X ) )
= X ) ) ).
% double_compl
thf(fact_172_uminus__apply,axiom,
! [B: $tType,A: $tType] :
( ( uminus @ B @ ( type2 @ B ) )
=> ( ( uminus_uminus @ ( A > B ) )
= ( ^ [A4: A > B,X2: A] : ( uminus_uminus @ B @ ( A4 @ X2 ) ) ) ) ) ).
% uminus_apply
thf(fact_173_Compl__eq__Compl__iff,axiom,
! [A: $tType,A2: set @ A,B2: set @ A] :
( ( ( uminus_uminus @ ( set @ A ) @ A2 )
= ( uminus_uminus @ ( set @ A ) @ B2 ) )
= ( A2 = B2 ) ) ).
% Compl_eq_Compl_iff
thf(fact_174_Compl__iff,axiom,
! [A: $tType,C2: A,A2: set @ A] :
( ( member @ A @ C2 @ ( uminus_uminus @ ( set @ A ) @ A2 ) )
= ( ~ ( member @ A @ C2 @ A2 ) ) ) ).
% Compl_iff
thf(fact_175_ComplI,axiom,
! [A: $tType,C2: A,A2: set @ A] :
( ~ ( member @ A @ C2 @ A2 )
=> ( member @ A @ C2 @ ( uminus_uminus @ ( set @ A ) @ A2 ) ) ) ).
% ComplI
thf(fact_176_le__zero__eq,axiom,
! [A: $tType] :
( ( canoni770627133id_add @ A @ ( type2 @ A ) )
=> ! [N: A] :
( ( ord_less_eq @ A @ N @ ( zero_zero @ A ) )
= ( N
= ( zero_zero @ A ) ) ) ) ).
% le_zero_eq
thf(fact_177_diff__self,axiom,
! [A: $tType] :
( ( group_add @ A @ ( type2 @ A ) )
=> ! [A3: A] :
( ( minus_minus @ A @ A3 @ A3 )
= ( zero_zero @ A ) ) ) ).
% diff_self
thf(fact_178_diff__0__right,axiom,
! [A: $tType] :
( ( group_add @ A @ ( type2 @ A ) )
=> ! [A3: A] :
( ( minus_minus @ A @ A3 @ ( zero_zero @ A ) )
= A3 ) ) ).
% diff_0_right
thf(fact_179_zero__diff,axiom,
! [A: $tType] :
( ( comm_monoid_diff @ A @ ( type2 @ A ) )
=> ! [A3: A] :
( ( minus_minus @ A @ ( zero_zero @ A ) @ A3 )
= ( zero_zero @ A ) ) ) ).
% zero_diff
thf(fact_180_diff__zero,axiom,
! [A: $tType] :
( ( cancel1352612707id_add @ A @ ( type2 @ A ) )
=> ! [A3: A] :
( ( minus_minus @ A @ A3 @ ( zero_zero @ A ) )
= A3 ) ) ).
% diff_zero
thf(fact_181_cancel__comm__monoid__add__class_Odiff__cancel,axiom,
! [A: $tType] :
( ( cancel1352612707id_add @ A @ ( type2 @ A ) )
=> ! [A3: A] :
( ( minus_minus @ A @ A3 @ A3 )
= ( zero_zero @ A ) ) ) ).
% cancel_comm_monoid_add_class.diff_cancel
thf(fact_182_neg__le__iff__le,axiom,
! [A: $tType] :
( ( ordered_ab_group_add @ A @ ( type2 @ A ) )
=> ! [B3: A,A3: A] :
( ( ord_less_eq @ A @ ( uminus_uminus @ A @ B3 ) @ ( uminus_uminus @ A @ A3 ) )
= ( ord_less_eq @ A @ A3 @ B3 ) ) ) ).
% neg_le_iff_le
thf(fact_183_compl__le__compl__iff,axiom,
! [A: $tType] :
( ( boolean_algebra @ A @ ( type2 @ A ) )
=> ! [X: A,Y: A] :
( ( ord_less_eq @ A @ ( uminus_uminus @ A @ X ) @ ( uminus_uminus @ A @ Y ) )
= ( ord_less_eq @ A @ Y @ X ) ) ) ).
% compl_le_compl_iff
thf(fact_184_sup__bot_Oright__neutral,axiom,
! [A: $tType] :
( ( bounde1808546759up_bot @ A @ ( type2 @ A ) )
=> ! [A3: A] :
( ( sup_sup @ A @ A3 @ ( bot_bot @ A ) )
= A3 ) ) ).
% sup_bot.right_neutral
thf(fact_185_sup__bot_Oleft__neutral,axiom,
! [A: $tType] :
( ( bounde1808546759up_bot @ A @ ( type2 @ A ) )
=> ! [A3: A] :
( ( sup_sup @ A @ ( bot_bot @ A ) @ A3 )
= A3 ) ) ).
% sup_bot.left_neutral
thf(fact_186_sup__eq__bot__iff,axiom,
! [A: $tType] :
( ( bounded_lattice_bot @ A @ ( type2 @ A ) )
=> ! [X: A,Y: A] :
( ( ( sup_sup @ A @ X @ Y )
= ( bot_bot @ A ) )
= ( ( X
= ( bot_bot @ A ) )
& ( Y
= ( bot_bot @ A ) ) ) ) ) ).
% sup_eq_bot_iff
thf(fact_187_bot__eq__sup__iff,axiom,
! [A: $tType] :
( ( bounded_lattice_bot @ A @ ( type2 @ A ) )
=> ! [X: A,Y: A] :
( ( ( bot_bot @ A )
= ( sup_sup @ A @ X @ Y ) )
= ( ( X
= ( bot_bot @ A ) )
& ( Y
= ( bot_bot @ A ) ) ) ) ) ).
% bot_eq_sup_iff
thf(fact_188_minus__diff__eq,axiom,
! [A: $tType] :
( ( group_add @ A @ ( type2 @ A ) )
=> ! [A3: A,B3: A] :
( ( uminus_uminus @ A @ ( minus_minus @ A @ A3 @ B3 ) )
= ( minus_minus @ A @ B3 @ A3 ) ) ) ).
% minus_diff_eq
thf(fact_189_empty__subsetI,axiom,
! [A: $tType,A2: set @ A] : ( ord_less_eq @ ( set @ A ) @ ( bot_bot @ ( set @ A ) ) @ A2 ) ).
% empty_subsetI
thf(fact_190_subset__empty,axiom,
! [A: $tType,A2: set @ A] :
( ( ord_less_eq @ ( set @ A ) @ A2 @ ( bot_bot @ ( set @ A ) ) )
= ( A2
= ( bot_bot @ ( set @ A ) ) ) ) ).
% subset_empty
thf(fact_191_Un__empty,axiom,
! [A: $tType,A2: set @ A,B2: set @ A] :
( ( ( sup_sup @ ( set @ A ) @ A2 @ B2 )
= ( bot_bot @ ( set @ A ) ) )
= ( ( A2
= ( bot_bot @ ( set @ A ) ) )
& ( B2
= ( bot_bot @ ( set @ A ) ) ) ) ) ).
% Un_empty
thf(fact_192_Diff__cancel,axiom,
! [A: $tType,A2: set @ A] :
( ( minus_minus @ ( set @ A ) @ A2 @ A2 )
= ( bot_bot @ ( set @ A ) ) ) ).
% Diff_cancel
thf(fact_193_empty__Diff,axiom,
! [A: $tType,A2: set @ A] :
( ( minus_minus @ ( set @ A ) @ ( bot_bot @ ( set @ A ) ) @ A2 )
= ( bot_bot @ ( set @ A ) ) ) ).
% empty_Diff
thf(fact_194_Diff__empty,axiom,
! [A: $tType,A2: set @ A] :
( ( minus_minus @ ( set @ A ) @ A2 @ ( bot_bot @ ( set @ A ) ) )
= A2 ) ).
% Diff_empty
thf(fact_195_Compl__subset__Compl__iff,axiom,
! [A: $tType,A2: set @ A,B2: set @ A] :
( ( ord_less_eq @ ( set @ A ) @ ( uminus_uminus @ ( set @ A ) @ A2 ) @ ( uminus_uminus @ ( set @ A ) @ B2 ) )
= ( ord_less_eq @ ( set @ A ) @ B2 @ A2 ) ) ).
% Compl_subset_Compl_iff
thf(fact_196_Compl__anti__mono,axiom,
! [A: $tType,A2: set @ A,B2: set @ A] :
( ( ord_less_eq @ ( set @ A ) @ A2 @ B2 )
=> ( ord_less_eq @ ( set @ A ) @ ( uminus_uminus @ ( set @ A ) @ B2 ) @ ( uminus_uminus @ ( set @ A ) @ A2 ) ) ) ).
% Compl_anti_mono
thf(fact_197_neg__0__le__iff__le,axiom,
! [A: $tType] :
( ( ordered_ab_group_add @ A @ ( type2 @ A ) )
=> ! [A3: A] :
( ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( uminus_uminus @ A @ A3 ) )
= ( ord_less_eq @ A @ A3 @ ( zero_zero @ A ) ) ) ) ).
% neg_0_le_iff_le
thf(fact_198_neg__le__0__iff__le,axiom,
! [A: $tType] :
( ( ordered_ab_group_add @ A @ ( type2 @ A ) )
=> ! [A3: A] :
( ( ord_less_eq @ A @ ( uminus_uminus @ A @ A3 ) @ ( zero_zero @ A ) )
= ( ord_less_eq @ A @ ( zero_zero @ A ) @ A3 ) ) ) ).
% neg_le_0_iff_le
thf(fact_199_less__eq__neg__nonpos,axiom,
! [A: $tType] :
( ( linord219039673up_add @ A @ ( type2 @ A ) )
=> ! [A3: A] :
( ( ord_less_eq @ A @ A3 @ ( uminus_uminus @ A @ A3 ) )
= ( ord_less_eq @ A @ A3 @ ( zero_zero @ A ) ) ) ) ).
% less_eq_neg_nonpos
thf(fact_200_neg__less__eq__nonneg,axiom,
! [A: $tType] :
( ( linord219039673up_add @ A @ ( type2 @ A ) )
=> ! [A3: A] :
( ( ord_less_eq @ A @ ( uminus_uminus @ A @ A3 ) @ A3 )
= ( ord_less_eq @ A @ ( zero_zero @ A ) @ A3 ) ) ) ).
% neg_less_eq_nonneg
thf(fact_201_diff__0,axiom,
! [A: $tType] :
( ( group_add @ A @ ( type2 @ A ) )
=> ! [A3: A] :
( ( minus_minus @ A @ ( zero_zero @ A ) @ A3 )
= ( uminus_uminus @ A @ A3 ) ) ) ).
% diff_0
thf(fact_202_eq__iff__diff__eq__0,axiom,
! [A: $tType] :
( ( group_add @ A @ ( type2 @ A ) )
=> ( ( ^ [Y2: A,Z2: A] : ( Y2 = Z2 ) )
= ( ^ [A5: A,B5: A] :
( ( minus_minus @ A @ A5 @ B5 )
= ( zero_zero @ A ) ) ) ) ) ).
% eq_iff_diff_eq_0
thf(fact_203_zero__le,axiom,
! [A: $tType] :
( ( canoni770627133id_add @ A @ ( type2 @ A ) )
=> ! [X: A] : ( ord_less_eq @ A @ ( zero_zero @ A ) @ X ) ) ).
% zero_le
thf(fact_204_le__imp__neg__le,axiom,
! [A: $tType] :
( ( ordered_ab_group_add @ A @ ( type2 @ A ) )
=> ! [A3: A,B3: A] :
( ( ord_less_eq @ A @ A3 @ B3 )
=> ( ord_less_eq @ A @ ( uminus_uminus @ A @ B3 ) @ ( uminus_uminus @ A @ A3 ) ) ) ) ).
% le_imp_neg_le
thf(fact_205_minus__le__iff,axiom,
! [A: $tType] :
( ( ordered_ab_group_add @ A @ ( type2 @ A ) )
=> ! [A3: A,B3: A] :
( ( ord_less_eq @ A @ ( uminus_uminus @ A @ A3 ) @ B3 )
= ( ord_less_eq @ A @ ( uminus_uminus @ A @ B3 ) @ A3 ) ) ) ).
% minus_le_iff
thf(fact_206_le__minus__iff,axiom,
! [A: $tType] :
( ( ordered_ab_group_add @ A @ ( type2 @ A ) )
=> ! [A3: A,B3: A] :
( ( ord_less_eq @ A @ A3 @ ( uminus_uminus @ A @ B3 ) )
= ( ord_less_eq @ A @ B3 @ ( uminus_uminus @ A @ A3 ) ) ) ) ).
% le_minus_iff
thf(fact_207_pairwise__empty,axiom,
! [A: $tType,P: A > A > $o] : ( pairwise @ A @ P @ ( bot_bot @ ( set @ A ) ) ) ).
% pairwise_empty
thf(fact_208_subset__Compl__self__eq,axiom,
! [A: $tType,A2: set @ A] :
( ( ord_less_eq @ ( set @ A ) @ A2 @ ( uminus_uminus @ ( set @ A ) @ A2 ) )
= ( A2
= ( bot_bot @ ( set @ A ) ) ) ) ).
% subset_Compl_self_eq
thf(fact_209_bot_Oextremum,axiom,
! [A: $tType] :
( ( order_bot @ A @ ( type2 @ A ) )
=> ! [A3: A] : ( ord_less_eq @ A @ ( bot_bot @ A ) @ A3 ) ) ).
% bot.extremum
thf(fact_210_bot_Oextremum__unique,axiom,
! [A: $tType] :
( ( order_bot @ A @ ( type2 @ A ) )
=> ! [A3: A] :
( ( ord_less_eq @ A @ A3 @ ( bot_bot @ A ) )
= ( A3
= ( bot_bot @ A ) ) ) ) ).
% bot.extremum_unique
thf(fact_211_bot_Oextremum__uniqueI,axiom,
! [A: $tType] :
( ( order_bot @ A @ ( type2 @ A ) )
=> ! [A3: A] :
( ( ord_less_eq @ A @ A3 @ ( bot_bot @ A ) )
=> ( A3
= ( bot_bot @ A ) ) ) ) ).
% bot.extremum_uniqueI
thf(fact_212_compl__mono,axiom,
! [A: $tType] :
( ( boolean_algebra @ A @ ( type2 @ A ) )
=> ! [X: A,Y: A] :
( ( ord_less_eq @ A @ X @ Y )
=> ( ord_less_eq @ A @ ( uminus_uminus @ A @ Y ) @ ( uminus_uminus @ A @ X ) ) ) ) ).
% compl_mono
thf(fact_213_compl__le__swap1,axiom,
! [A: $tType] :
( ( boolean_algebra @ A @ ( type2 @ A ) )
=> ! [Y: A,X: A] :
( ( ord_less_eq @ A @ Y @ ( uminus_uminus @ A @ X ) )
=> ( ord_less_eq @ A @ X @ ( uminus_uminus @ A @ Y ) ) ) ) ).
% compl_le_swap1
thf(fact_214_compl__le__swap2,axiom,
! [A: $tType] :
( ( boolean_algebra @ A @ ( type2 @ A ) )
=> ! [Y: A,X: A] :
( ( ord_less_eq @ A @ ( uminus_uminus @ A @ Y ) @ X )
=> ( ord_less_eq @ A @ ( uminus_uminus @ A @ X ) @ Y ) ) ) ).
% compl_le_swap2
thf(fact_215_Un__empty__right,axiom,
! [A: $tType,A2: set @ A] :
( ( sup_sup @ ( set @ A ) @ A2 @ ( bot_bot @ ( set @ A ) ) )
= A2 ) ).
% Un_empty_right
thf(fact_216_Un__empty__left,axiom,
! [A: $tType,B2: set @ A] :
( ( sup_sup @ ( set @ A ) @ ( bot_bot @ ( set @ A ) ) @ B2 )
= B2 ) ).
% Un_empty_left
thf(fact_217_fun__Compl__def,axiom,
! [B: $tType,A: $tType] :
( ( uminus @ B @ ( type2 @ B ) )
=> ( ( uminus_uminus @ ( A > B ) )
= ( ^ [A4: A > B,X2: A] : ( uminus_uminus @ B @ ( A4 @ X2 ) ) ) ) ) ).
% fun_Compl_def
thf(fact_218_double__complement,axiom,
! [A: $tType,A2: set @ A] :
( ( uminus_uminus @ ( set @ A ) @ ( uminus_uminus @ ( set @ A ) @ A2 ) )
= A2 ) ).
% double_complement
thf(fact_219_ex__in__conv,axiom,
! [A: $tType,A2: set @ A] :
( ( ? [X2: A] : ( member @ A @ X2 @ A2 ) )
= ( A2
!= ( bot_bot @ ( set @ A ) ) ) ) ).
% ex_in_conv
thf(fact_220_equals0I,axiom,
! [A: $tType,A2: set @ A] :
( ! [Y4: A] :
~ ( member @ A @ Y4 @ A2 )
=> ( A2
= ( bot_bot @ ( set @ A ) ) ) ) ).
% equals0I
thf(fact_221_equals0D,axiom,
! [A: $tType,A2: set @ A,A3: A] :
( ( A2
= ( bot_bot @ ( set @ A ) ) )
=> ~ ( member @ A @ A3 @ A2 ) ) ).
% equals0D
thf(fact_222_emptyE,axiom,
! [A: $tType,A3: A] :
~ ( member @ A @ A3 @ ( bot_bot @ ( set @ A ) ) ) ).
% emptyE
thf(fact_223_ComplD,axiom,
! [A: $tType,C2: A,A2: set @ A] :
( ( member @ A @ C2 @ ( uminus_uminus @ ( set @ A ) @ A2 ) )
=> ~ ( member @ A @ C2 @ A2 ) ) ).
% ComplD
thf(fact_224_sup__bot__right,axiom,
! [A: $tType] :
( ( bounded_lattice_bot @ A @ ( type2 @ A ) )
=> ! [X: A] :
( ( sup_sup @ A @ X @ ( bot_bot @ A ) )
= X ) ) ).
% sup_bot_right
thf(fact_225_sup__bot__left,axiom,
! [A: $tType] :
( ( bounded_lattice_bot @ A @ ( type2 @ A ) )
=> ! [X: A] :
( ( sup_sup @ A @ ( bot_bot @ A ) @ X )
= X ) ) ).
% sup_bot_left
thf(fact_226_bot__fun__def,axiom,
! [B: $tType,A: $tType] :
( ( bot @ B @ ( type2 @ B ) )
=> ( ( bot_bot @ ( A > B ) )
= ( ^ [X2: A] : ( bot_bot @ B ) ) ) ) ).
% bot_fun_def
thf(fact_227_le__iff__diff__le__0,axiom,
! [A: $tType] :
( ( ordered_ab_group_add @ A @ ( type2 @ A ) )
=> ( ( ord_less_eq @ A )
= ( ^ [A5: A,B5: A] : ( ord_less_eq @ A @ ( minus_minus @ A @ A5 @ B5 ) @ ( zero_zero @ A ) ) ) ) ) ).
% le_iff_diff_le_0
thf(fact_228_subset__emptyI,axiom,
! [A: $tType,A2: set @ A] :
( ! [X3: A] :
~ ( member @ A @ X3 @ A2 )
=> ( ord_less_eq @ ( set @ A ) @ A2 @ ( bot_bot @ ( set @ A ) ) ) ) ).
% subset_emptyI
thf(fact_229_le__numeral__extra_I3_J,axiom,
! [A: $tType] :
( ( linordered_semidom @ A @ ( type2 @ A ) )
=> ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( zero_zero @ A ) ) ) ).
% le_numeral_extra(3)
thf(fact_230_not__root__Fr,axiom,
! [Tr: dtree,Ns: set @ n] :
( ~ ( member @ n @ ( root @ Tr ) @ Ns )
=> ( ( gram_L861583724lle_Fr @ Ns @ Tr )
= ( bot_bot @ ( set @ t ) ) ) ) ).
% not_root_Fr
thf(fact_231_bot__set__def,axiom,
! [A: $tType] :
( ( bot_bot @ ( set @ A ) )
= ( collect @ A @ ( bot_bot @ ( A > $o ) ) ) ) ).
% bot_set_def
thf(fact_232_Set_Ois__empty__def,axiom,
! [A: $tType] :
( ( is_empty @ A )
= ( ^ [A4: set @ A] :
( A4
= ( bot_bot @ ( set @ A ) ) ) ) ) ).
% Set.is_empty_def
thf(fact_233_diff__numeral__special_I12_J,axiom,
! [A: $tType] :
( ( neg_numeral @ A @ ( type2 @ A ) )
=> ( ( minus_minus @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) @ ( uminus_uminus @ A @ ( one_one @ A ) ) )
= ( zero_zero @ A ) ) ) ).
% diff_numeral_special(12)
thf(fact_234_diff__numeral__special_I9_J,axiom,
! [A: $tType] :
( ( neg_numeral @ A @ ( type2 @ A ) )
=> ( ( minus_minus @ A @ ( one_one @ A ) @ ( one_one @ A ) )
= ( zero_zero @ A ) ) ) ).
% diff_numeral_special(9)
thf(fact_235_le__numeral__extra_I1_J,axiom,
! [A: $tType] :
( ( linordered_semidom @ A @ ( type2 @ A ) )
=> ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( one_one @ A ) ) ) ).
% le_numeral_extra(1)
thf(fact_236_le__numeral__extra_I2_J,axiom,
! [A: $tType] :
( ( linordered_semidom @ A @ ( type2 @ A ) )
=> ~ ( ord_less_eq @ A @ ( one_one @ A ) @ ( zero_zero @ A ) ) ) ).
% le_numeral_extra(2)
thf(fact_237_le__minus__one__simps_I2_J,axiom,
! [A: $tType] :
( ( linordered_idom @ A @ ( type2 @ A ) )
=> ( ord_less_eq @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) @ ( one_one @ A ) ) ) ).
% le_minus_one_simps(2)
thf(fact_238_le__minus__one__simps_I4_J,axiom,
! [A: $tType] :
( ( linordered_idom @ A @ ( type2 @ A ) )
=> ~ ( ord_less_eq @ A @ ( one_one @ A ) @ ( uminus_uminus @ A @ ( one_one @ A ) ) ) ) ).
% le_minus_one_simps(4)
thf(fact_239_le__numeral__extra_I4_J,axiom,
! [A: $tType] :
( ( linordered_semidom @ A @ ( type2 @ A ) )
=> ( ord_less_eq @ A @ ( one_one @ A ) @ ( one_one @ A ) ) ) ).
% le_numeral_extra(4)
thf(fact_240_le__minus__one__simps_I1_J,axiom,
! [A: $tType] :
( ( linordered_idom @ A @ ( type2 @ A ) )
=> ( ord_less_eq @ A @ ( uminus_uminus @ A @ ( one_one @ A ) ) @ ( zero_zero @ A ) ) ) ).
% le_minus_one_simps(1)
thf(fact_241_le__minus__one__simps_I3_J,axiom,
! [A: $tType] :
( ( linordered_idom @ A @ ( type2 @ A ) )
=> ~ ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( uminus_uminus @ A @ ( one_one @ A ) ) ) ) ).
% le_minus_one_simps(3)
thf(fact_242_zero__le__one,axiom,
! [A: $tType] :
( ( linord1659791738miring @ A @ ( type2 @ A ) )
=> ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( one_one @ A ) ) ) ).
% zero_le_one
thf(fact_243_not__one__le__zero,axiom,
! [A: $tType] :
( ( linord1659791738miring @ A @ ( type2 @ A ) )
=> ~ ( ord_less_eq @ A @ ( one_one @ A ) @ ( zero_zero @ A ) ) ) ).
% not_one_le_zero
thf(fact_244_subset__Compl__singleton,axiom,
! [A: $tType,A2: set @ A,B3: A] :
( ( ord_less_eq @ ( set @ A ) @ A2 @ ( uminus_uminus @ ( set @ A ) @ ( insert @ A @ B3 @ ( bot_bot @ ( set @ A ) ) ) ) )
= ( ~ ( member @ A @ B3 @ A2 ) ) ) ).
% subset_Compl_singleton
thf(fact_245_sup__bot_Osemilattice__neutr__axioms,axiom,
! [A: $tType] :
( ( bounde1808546759up_bot @ A @ ( type2 @ A ) )
=> ( semilattice_neutr @ A @ ( sup_sup @ A ) @ ( bot_bot @ A ) ) ) ).
% sup_bot.semilattice_neutr_axioms
thf(fact_246_insert__absorb2,axiom,
! [A: $tType,X: A,A2: set @ A] :
( ( insert @ A @ X @ ( insert @ A @ X @ A2 ) )
= ( insert @ A @ X @ A2 ) ) ).
% insert_absorb2
thf(fact_247_insert__iff,axiom,
! [A: $tType,A3: A,B3: A,A2: set @ A] :
( ( member @ A @ A3 @ ( insert @ A @ B3 @ A2 ) )
= ( ( A3 = B3 )
| ( member @ A @ A3 @ A2 ) ) ) ).
% insert_iff
thf(fact_248_insertCI,axiom,
! [A: $tType,A3: A,B2: set @ A,B3: A] :
( ( ~ ( member @ A @ A3 @ B2 )
=> ( A3 = B3 ) )
=> ( member @ A @ A3 @ ( insert @ A @ B3 @ B2 ) ) ) ).
% insertCI
thf(fact_249_singletonI,axiom,
! [A: $tType,A3: A] : ( member @ A @ A3 @ ( insert @ A @ A3 @ ( bot_bot @ ( set @ A ) ) ) ) ).
% singletonI
thf(fact_250_insert__subset,axiom,
! [A: $tType,X: A,A2: set @ A,B2: set @ A] :
( ( ord_less_eq @ ( set @ A ) @ ( insert @ A @ X @ A2 ) @ B2 )
= ( ( member @ A @ X @ B2 )
& ( ord_less_eq @ ( set @ A ) @ A2 @ B2 ) ) ) ).
% insert_subset
thf(fact_251_Un__insert__right,axiom,
! [A: $tType,A2: set @ A,A3: A,B2: set @ A] :
( ( sup_sup @ ( set @ A ) @ A2 @ ( insert @ A @ A3 @ B2 ) )
= ( insert @ A @ A3 @ ( sup_sup @ ( set @ A ) @ A2 @ B2 ) ) ) ).
% Un_insert_right
thf(fact_252_Un__insert__left,axiom,
! [A: $tType,A3: A,B2: set @ A,C: set @ A] :
( ( sup_sup @ ( set @ A ) @ ( insert @ A @ A3 @ B2 ) @ C )
= ( insert @ A @ A3 @ ( sup_sup @ ( set @ A ) @ B2 @ C ) ) ) ).
% Un_insert_left
thf(fact_253_insert__Diff1,axiom,
! [A: $tType,X: A,B2: set @ A,A2: set @ A] :
( ( member @ A @ X @ B2 )
=> ( ( minus_minus @ ( set @ A ) @ ( insert @ A @ X @ A2 ) @ B2 )
= ( minus_minus @ ( set @ A ) @ A2 @ B2 ) ) ) ).
% insert_Diff1
thf(fact_254_Diff__insert0,axiom,
! [A: $tType,X: A,A2: set @ A,B2: set @ A] :
( ~ ( member @ A @ X @ A2 )
=> ( ( minus_minus @ ( set @ A ) @ A2 @ ( insert @ A @ X @ B2 ) )
= ( minus_minus @ ( set @ A ) @ A2 @ B2 ) ) ) ).
% Diff_insert0
thf(fact_255_singleton__insert__inj__eq_H,axiom,
! [A: $tType,A3: A,A2: set @ A,B3: A] :
( ( ( insert @ A @ A3 @ A2 )
= ( insert @ A @ B3 @ ( bot_bot @ ( set @ A ) ) ) )
= ( ( A3 = B3 )
& ( ord_less_eq @ ( set @ A ) @ A2 @ ( insert @ A @ B3 @ ( bot_bot @ ( set @ A ) ) ) ) ) ) ).
% singleton_insert_inj_eq'
%----Type constructors (40)
thf(tcon_HOL_Obool___Lattices_Obounded__lattice,axiom,
bounded_lattice @ $o @ ( type2 @ $o ) ).
thf(tcon_Set_Oset___Lattices_Obounded__lattice_1,axiom,
! [A7: $tType] : ( bounded_lattice @ ( set @ A7 ) @ ( type2 @ ( set @ A7 ) ) ) ).
thf(tcon_fun___Lattices_Obounded__lattice_2,axiom,
! [A7: $tType,A8: $tType] :
( ( bounded_lattice @ A8 @ ( type2 @ A8 ) )
=> ( bounded_lattice @ ( A7 > A8 ) @ ( type2 @ ( A7 > A8 ) ) ) ) ).
thf(tcon_fun___Lattices_Obounded__semilattice__sup__bot,axiom,
! [A7: $tType,A8: $tType] :
( ( bounded_lattice @ A8 @ ( type2 @ A8 ) )
=> ( bounde1808546759up_bot @ ( A7 > A8 ) @ ( type2 @ ( A7 > A8 ) ) ) ) ).
thf(tcon_fun___Lattices_Obounded__lattice__bot,axiom,
! [A7: $tType,A8: $tType] :
( ( bounded_lattice @ A8 @ ( type2 @ A8 ) )
=> ( bounded_lattice_bot @ ( A7 > A8 ) @ ( type2 @ ( A7 > A8 ) ) ) ) ).
thf(tcon_fun___Lattices_Osemilattice__sup,axiom,
! [A7: $tType,A8: $tType] :
( ( semilattice_sup @ A8 @ ( type2 @ A8 ) )
=> ( semilattice_sup @ ( A7 > A8 ) @ ( type2 @ ( A7 > A8 ) ) ) ) ).
thf(tcon_fun___Lattices_Oboolean__algebra,axiom,
! [A7: $tType,A8: $tType] :
( ( boolean_algebra @ A8 @ ( type2 @ A8 ) )
=> ( boolean_algebra @ ( A7 > A8 ) @ ( type2 @ ( A7 > A8 ) ) ) ) ).
thf(tcon_fun___Orderings_Oorder__bot,axiom,
! [A7: $tType,A8: $tType] :
( ( order_bot @ A8 @ ( type2 @ A8 ) )
=> ( order_bot @ ( A7 > A8 ) @ ( type2 @ ( A7 > A8 ) ) ) ) ).
thf(tcon_fun___Orderings_Opreorder,axiom,
! [A7: $tType,A8: $tType] :
( ( preorder @ A8 @ ( type2 @ A8 ) )
=> ( preorder @ ( A7 > A8 ) @ ( type2 @ ( A7 > A8 ) ) ) ) ).
thf(tcon_fun___Lattices_Olattice,axiom,
! [A7: $tType,A8: $tType] :
( ( lattice @ A8 @ ( type2 @ A8 ) )
=> ( lattice @ ( A7 > A8 ) @ ( type2 @ ( A7 > A8 ) ) ) ) ).
thf(tcon_fun___Orderings_Oorder,axiom,
! [A7: $tType,A8: $tType] :
( ( order @ A8 @ ( type2 @ A8 ) )
=> ( order @ ( A7 > A8 ) @ ( type2 @ ( A7 > A8 ) ) ) ) ).
thf(tcon_fun___Orderings_Oord,axiom,
! [A7: $tType,A8: $tType] :
( ( ord @ A8 @ ( type2 @ A8 ) )
=> ( ord @ ( A7 > A8 ) @ ( type2 @ ( A7 > A8 ) ) ) ) ).
thf(tcon_fun___Orderings_Obot,axiom,
! [A7: $tType,A8: $tType] :
( ( bot @ A8 @ ( type2 @ A8 ) )
=> ( bot @ ( A7 > A8 ) @ ( type2 @ ( A7 > A8 ) ) ) ) ).
thf(tcon_fun___Groups_Ouminus,axiom,
! [A7: $tType,A8: $tType] :
( ( uminus @ A8 @ ( type2 @ A8 ) )
=> ( uminus @ ( A7 > A8 ) @ ( type2 @ ( A7 > A8 ) ) ) ) ).
thf(tcon_fun___Groups_Ominus,axiom,
! [A7: $tType,A8: $tType] :
( ( minus @ A8 @ ( type2 @ A8 ) )
=> ( minus @ ( A7 > A8 ) @ ( type2 @ ( A7 > A8 ) ) ) ) ).
thf(tcon_Set_Oset___Lattices_Obounded__semilattice__sup__bot_3,axiom,
! [A7: $tType] : ( bounde1808546759up_bot @ ( set @ A7 ) @ ( type2 @ ( set @ A7 ) ) ) ).
thf(tcon_Set_Oset___Lattices_Obounded__lattice__bot_4,axiom,
! [A7: $tType] : ( bounded_lattice_bot @ ( set @ A7 ) @ ( type2 @ ( set @ A7 ) ) ) ).
thf(tcon_Set_Oset___Lattices_Osemilattice__sup_5,axiom,
! [A7: $tType] : ( semilattice_sup @ ( set @ A7 ) @ ( type2 @ ( set @ A7 ) ) ) ).
thf(tcon_Set_Oset___Lattices_Oboolean__algebra_6,axiom,
! [A7: $tType] : ( boolean_algebra @ ( set @ A7 ) @ ( type2 @ ( set @ A7 ) ) ) ).
thf(tcon_Set_Oset___Orderings_Oorder__bot_7,axiom,
! [A7: $tType] : ( order_bot @ ( set @ A7 ) @ ( type2 @ ( set @ A7 ) ) ) ).
thf(tcon_Set_Oset___Orderings_Opreorder_8,axiom,
! [A7: $tType] : ( preorder @ ( set @ A7 ) @ ( type2 @ ( set @ A7 ) ) ) ).
thf(tcon_Set_Oset___Lattices_Olattice_9,axiom,
! [A7: $tType] : ( lattice @ ( set @ A7 ) @ ( type2 @ ( set @ A7 ) ) ) ).
thf(tcon_Set_Oset___Orderings_Oorder_10,axiom,
! [A7: $tType] : ( order @ ( set @ A7 ) @ ( type2 @ ( set @ A7 ) ) ) ).
thf(tcon_Set_Oset___Orderings_Oord_11,axiom,
! [A7: $tType] : ( ord @ ( set @ A7 ) @ ( type2 @ ( set @ A7 ) ) ) ).
thf(tcon_Set_Oset___Orderings_Obot_12,axiom,
! [A7: $tType] : ( bot @ ( set @ A7 ) @ ( type2 @ ( set @ A7 ) ) ) ).
thf(tcon_Set_Oset___Groups_Ouminus_13,axiom,
! [A7: $tType] : ( uminus @ ( set @ A7 ) @ ( type2 @ ( set @ A7 ) ) ) ).
thf(tcon_Set_Oset___Groups_Ominus_14,axiom,
! [A7: $tType] : ( minus @ ( set @ A7 ) @ ( type2 @ ( set @ A7 ) ) ) ).
thf(tcon_HOL_Obool___Lattices_Obounded__semilattice__sup__bot_15,axiom,
bounde1808546759up_bot @ $o @ ( type2 @ $o ) ).
thf(tcon_HOL_Obool___Lattices_Obounded__lattice__bot_16,axiom,
bounded_lattice_bot @ $o @ ( type2 @ $o ) ).
thf(tcon_HOL_Obool___Lattices_Osemilattice__sup_17,axiom,
semilattice_sup @ $o @ ( type2 @ $o ) ).
thf(tcon_HOL_Obool___Lattices_Oboolean__algebra_18,axiom,
boolean_algebra @ $o @ ( type2 @ $o ) ).
thf(tcon_HOL_Obool___Orderings_Oorder__bot_19,axiom,
order_bot @ $o @ ( type2 @ $o ) ).
thf(tcon_HOL_Obool___Orderings_Opreorder_20,axiom,
preorder @ $o @ ( type2 @ $o ) ).
thf(tcon_HOL_Obool___Orderings_Olinorder,axiom,
linorder @ $o @ ( type2 @ $o ) ).
thf(tcon_HOL_Obool___Lattices_Olattice_21,axiom,
lattice @ $o @ ( type2 @ $o ) ).
thf(tcon_HOL_Obool___Orderings_Oorder_22,axiom,
order @ $o @ ( type2 @ $o ) ).
thf(tcon_HOL_Obool___Orderings_Oord_23,axiom,
ord @ $o @ ( type2 @ $o ) ).
thf(tcon_HOL_Obool___Orderings_Obot_24,axiom,
bot @ $o @ ( type2 @ $o ) ).
thf(tcon_HOL_Obool___Groups_Ouminus_25,axiom,
uminus @ $o @ ( type2 @ $o ) ).
thf(tcon_HOL_Obool___Groups_Ominus_26,axiom,
minus @ $o @ ( type2 @ $o ) ).
%----Conjectures (1)
thf(conj_0,conjecture,
gram_L716654942_subtr @ ns @ tr1 @ tr3 ).
%------------------------------------------------------------------------------