TPTP Problem File: COM158^1.p

View Solutions - Solve Problem

%------------------------------------------------------------------------------
% File     : COM158^1 : TPTP v9.1.0. Released v7.0.0.
% Domain   : Computing Theory
% Problem  : Abstract completeness 262
% Version  : [Bla16] axioms : Especial.
% English  :

% Refs     : [BPT14] Blanchette et al. (2014), Abstract Completeness
%          : [RB15]  Reynolds & Blanchette (2015), A Decision Procedure for
%          : [Bla16] Blanchette (2016), Email to Geoff Sutcliffe
% Source   : [Bla16]
% Names    : abstract_completeness__262.p [Bla16]

% Status   : Theorem
% Rating   : 1.00 v7.2.0, 0.75 v7.1.0
% Syntax   : Number of formulae    :  315 ( 112 unt;  46 typ;   0 def)
%            Number of atoms       :  645 ( 252 equ;   0 cnn)
%            Maximal formula atoms :    4 (   2 avg)
%            Number of connectives : 2764 (  66   ~;  11   |;  18   &;2412   @)
%                                         (   0 <=>; 257  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   16 (   6 avg)
%            Number of types       :    4 (   3 usr)
%            Number of type conns  :  109 ( 109   >;   0   *;   0   +;   0  <<)
%            Number of symbols     :   44 (  43 usr;   4 con; 0-5 aty)
%            Number of variables   :  700 (  15   ^; 629   !;  19   ?; 700   :)
%                                         (  37  !>;   0  ?*;   0  @-;   0  @+)
% SPC      : TH1_THM_EQU_NAR

% Comments : This file was generated by Isabelle (most likely Sledgehammer)
%            2016-07-13 14:54:29.477
%------------------------------------------------------------------------------
%----Could-be-implicit typings (7)
thf(ty_t_Stream_Ostream,type,
    stream: $tType > $tType ).

thf(ty_t_FSet_Ofset,type,
    fset: $tType > $tType ).

thf(ty_t_Set_Oset,type,
    set: $tType > $tType ).

thf(ty_t_Nat_Onat,type,
    nat: $tType ).

thf(ty_tf_state,type,
    state: $tType ).

thf(ty_t_itself,type,
    itself: $tType > $tType ).

thf(ty_tf_rule,type,
    rule: $tType ).

%----Explicit typings (39)
thf(sy_cl_HOL_Otype,type,
    type: 
      !>[A: $tType] : ( ( itself @ A ) > $o ) ).

thf(sy_cl_Groups_Ozero,type,
    zero: 
      !>[A: $tType] : ( ( itself @ A ) > $o ) ).

thf(sy_cl_Orderings_Oorder,type,
    order: 
      !>[A: $tType] : ( ( itself @ A ) > $o ) ).

thf(sy_cl_Groups_Ogroup__add,type,
    group_add: 
      !>[A: $tType] : ( ( itself @ A ) > $o ) ).

thf(sy_cl_Groups_Omonoid__add,type,
    monoid_add: 
      !>[A: $tType] : ( ( itself @ A ) > $o ) ).

thf(sy_cl_Rings_Olinordered__idom,type,
    linordered_idom: 
      !>[A: $tType] : ( ( itself @ A ) > $o ) ).

thf(sy_cl_Groups_Oab__semigroup__add,type,
    ab_semigroup_add: 
      !>[A: $tType] : ( ( itself @ A ) > $o ) ).

thf(sy_cl_Groups_Ocomm__monoid__diff,type,
    comm_monoid_diff: 
      !>[A: $tType] : ( ( itself @ A ) > $o ) ).

thf(sy_cl_Rings_Olinordered__semidom,type,
    linordered_semidom: 
      !>[A: $tType] : ( ( itself @ A ) > $o ) ).

thf(sy_cl_Groups_Ocancel__semigroup__add,type,
    cancel_semigroup_add: 
      !>[A: $tType] : ( ( itself @ A ) > $o ) ).

thf(sy_cl_Groups_Oordered__ab__group__add,type,
    ordered_ab_group_add: 
      !>[A: $tType] : ( ( itself @ A ) > $o ) ).

thf(sy_cl_Groups_Ocancel__comm__monoid__add,type,
    cancel1352612707id_add: 
      !>[A: $tType] : ( ( itself @ A ) > $o ) ).

thf(sy_cl_Groups_Ocancel__ab__semigroup__add,type,
    cancel146912293up_add: 
      !>[A: $tType] : ( ( itself @ A ) > $o ) ).

thf(sy_cl_Groups_Olinordered__ab__group__add,type,
    linord219039673up_add: 
      !>[A: $tType] : ( ( itself @ A ) > $o ) ).

thf(sy_cl_Groups_Ocanonically__ordered__monoid__add,type,
    canoni770627133id_add: 
      !>[A: $tType] : ( ( itself @ A ) > $o ) ).

thf(sy_cl_Groups_Oordered__ab__semigroup__add__imp__le,type,
    ordere236663937imp_le: 
      !>[A: $tType] : ( ( itself @ A ) > $o ) ).

thf(sy_cl_Groups_Oordered__ab__semigroup__monoid__add__imp__le,type,
    ordere516151231imp_le: 
      !>[A: $tType] : ( ( itself @ A ) > $o ) ).

thf(sy_c_Abstract__Completeness__Mirabelle__wdxnrclvrt_ORuleSystem_OminWait,type,
    abstra1332369113inWait: 
      !>[Rule: $tType,State: $tType] : ( ( Rule > State > ( fset @ State ) > $o ) > ( stream @ Rule ) > State > nat ) ).

thf(sy_c_Abstract__Completeness__Mirabelle__wdxnrclvrt_ORuleSystem_Opos,type,
    abstra2097340358le_pos: 
      !>[A: $tType] : ( ( stream @ A ) > A > nat ) ).

thf(sy_c_Abstract__Completeness__Mirabelle__wdxnrclvrt_ORuleSystem__Defs_Oenabled,type,
    abstra1874422341nabled: 
      !>[Rule: $tType,State: $tType] : ( ( Rule > State > ( fset @ State ) > $o ) > Rule > State > $o ) ).

thf(sy_c_Abstract__Completeness__Mirabelle__wdxnrclvrt_ORuleSystem__Defs_OpickEff,type,
    abstra1276541928ickEff: 
      !>[Rule: $tType,State: $tType] : ( ( Rule > State > ( fset @ State ) > $o ) > Rule > State > ( fset @ State ) ) ).

thf(sy_c_Abstract__Completeness__Mirabelle__wdxnrclvrt_ORuleSystem__Defs_Otrim,type,
    abstra1259602206m_trim: 
      !>[Rule: $tType,State: $tType] : ( ( Rule > State > ( fset @ State ) > $o ) > ( stream @ Rule ) > State > ( stream @ Rule ) ) ).

thf(sy_c_Groups_Ominus__class_Ominus,type,
    minus_minus: 
      !>[A: $tType] : ( A > A > A ) ).

thf(sy_c_Groups_Oplus__class_Oplus,type,
    plus_plus: 
      !>[A: $tType] : ( A > A > A ) ).

thf(sy_c_Groups_Ozero__class_Ozero,type,
    zero_zero: 
      !>[A: $tType] : A ).

thf(sy_c_Nat_OSuc,type,
    suc: nat > nat ).

thf(sy_c_Orderings_Oord__class_Oless,type,
    ord_less: 
      !>[A: $tType] : ( A > A > $o ) ).

thf(sy_c_Orderings_Oord__class_Oless__eq,type,
    ord_less_eq: 
      !>[A: $tType] : ( A > A > $o ) ).

thf(sy_c_Pure_Otype,type,
    type2: 
      !>[A: $tType] : ( itself @ A ) ).

thf(sy_c_Set_OCollect,type,
    collect: 
      !>[A: $tType] : ( ( A > $o ) > ( set @ A ) ) ).

thf(sy_c_Stream_Osdrop,type,
    sdrop: 
      !>[A: $tType] : ( nat > ( stream @ A ) > ( stream @ A ) ) ).

thf(sy_c_Stream_Ostream_Oshd,type,
    shd: 
      !>[A: $tType] : ( ( stream @ A ) > A ) ).

thf(sy_c_Stream_Ostream_Ostl,type,
    stl: 
      !>[A: $tType] : ( ( stream @ A ) > ( stream @ A ) ) ).

thf(sy_c_member,type,
    member: 
      !>[A: $tType] : ( A > ( set @ A ) > $o ) ).

thf(sy_v_S,type,
    s: set @ state ).

thf(sy_v_eff,type,
    eff: rule > state > ( fset @ state ) > $o ).

thf(sy_v_r,type,
    r: rule ).

thf(sy_v_rs,type,
    rs: stream @ rule ).

thf(sy_v_s,type,
    s2: state ).

%----Relevant facts (253)
thf(fact_0__092_060open_062shd_A_Isdrop_A_Ipos_Ars_Ar_J_Ars_J_A_061_Ar_092_060close_062,axiom,
    ( ( shd @ rule @ ( sdrop @ rule @ ( abstra2097340358le_pos @ rule @ rs @ r ) @ rs ) )
    = r ) ).

% \<open>shd (sdrop (pos rs r) rs) = r\<close>
thf(fact_1__092_060open_062shd_A_Istl_A_Isdrop_A_Ipos_Ars_Ar_A_N_ASuc_A0_J_Ars_J_J_A_061_Ashd_A_Isdrop_A_Ipos_Ars_Ar_J_Ars_J_092_060close_062,axiom,
    ( ( shd @ rule @ ( stl @ rule @ ( sdrop @ rule @ ( minus_minus @ nat @ ( abstra2097340358le_pos @ rule @ rs @ r ) @ ( suc @ ( zero_zero @ nat ) ) ) @ rs ) ) )
    = ( shd @ rule @ ( sdrop @ rule @ ( abstra2097340358le_pos @ rule @ rs @ r ) @ rs ) ) ) ).

% \<open>shd (stl (sdrop (pos rs r - Suc 0) rs)) = shd (sdrop (pos rs r) rs)\<close>
thf(fact_2__092_060open_062pos_Ars_Ar_A_N_ASuc_A_IminWait_Ars_As_J_A_L_AminWait_Ars_As_A_061_Apos_Ars_Ar_A_N_ASuc_A0_092_060close_062,axiom,
    ( ( plus_plus @ nat @ ( minus_minus @ nat @ ( abstra2097340358le_pos @ rule @ rs @ r ) @ ( suc @ ( abstra1332369113inWait @ rule @ state @ eff @ rs @ s2 ) ) ) @ ( abstra1332369113inWait @ rule @ state @ eff @ rs @ s2 ) )
    = ( minus_minus @ nat @ ( abstra2097340358le_pos @ rule @ rs @ r ) @ ( suc @ ( zero_zero @ nat ) ) ) ) ).

% \<open>pos rs r - Suc (minWait rs s) + minWait rs s = pos rs r - Suc 0\<close>
thf(fact_3_s,axiom,
    member @ state @ s2 @ s ).

% s
thf(fact_4_pos__least,axiom,
    ! [A: $tType,N: nat,Rs: stream @ A,R: A] :
      ( ( ( shd @ A @ ( sdrop @ A @ N @ Rs ) )
        = R )
     => ( ord_less_eq @ nat @ ( abstra2097340358le_pos @ A @ Rs @ R ) @ N ) ) ).

% pos_least
thf(fact_5_m,axiom,
    ord_less @ nat @ ( abstra1332369113inWait @ rule @ state @ eff @ rs @ s2 ) @ ( abstra2097340358le_pos @ rule @ rs @ r ) ).

% m
thf(fact_6_diff__diff__cancel,axiom,
    ! [I: nat,N: nat] :
      ( ( ord_less_eq @ nat @ I @ N )
     => ( ( minus_minus @ nat @ N @ ( minus_minus @ nat @ N @ I ) )
        = I ) ) ).

% diff_diff_cancel
thf(fact_7_diff__Suc__Suc,axiom,
    ! [M: nat,N: nat] :
      ( ( minus_minus @ nat @ ( suc @ M ) @ ( suc @ N ) )
      = ( minus_minus @ nat @ M @ N ) ) ).

% diff_Suc_Suc
thf(fact_8_Suc__diff__diff,axiom,
    ! [M: nat,N: nat,K: nat] :
      ( ( minus_minus @ nat @ ( minus_minus @ nat @ ( suc @ M ) @ N ) @ ( suc @ K ) )
      = ( minus_minus @ nat @ ( minus_minus @ nat @ M @ N ) @ K ) ) ).

% Suc_diff_diff
thf(fact_9_Suc__le__mono,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_eq @ nat @ ( suc @ N ) @ ( suc @ M ) )
      = ( ord_less_eq @ nat @ N @ M ) ) ).

% Suc_le_mono
thf(fact_10_enabled__def,axiom,
    ! [R: rule,S: state] :
      ( ( abstra1874422341nabled @ rule @ state @ eff @ R @ S )
      = ( ^ [P: ( fset @ state ) > $o] :
          ? [X: fset @ state] : ( P @ X )
        @ ( eff @ R @ S ) ) ) ).

% enabled_def
thf(fact_11_Suc__diff__le,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less_eq @ nat @ N @ M )
     => ( ( minus_minus @ nat @ ( suc @ M ) @ N )
        = ( suc @ ( minus_minus @ nat @ M @ N ) ) ) ) ).

% Suc_diff_le
thf(fact_12_prod__decode__aux_Oinduct,axiom,
    ! [P2: nat > nat > $o,A0: nat,A1: nat] :
      ( ! [K2: nat,M2: nat] :
          ( ( ~ ( ord_less_eq @ nat @ M2 @ K2 )
           => ( P2 @ ( suc @ K2 ) @ ( minus_minus @ nat @ M2 @ ( suc @ K2 ) ) ) )
         => ( P2 @ K2 @ M2 ) )
     => ( P2 @ A0 @ A1 ) ) ).

% prod_decode_aux.induct
thf(fact_13_lift__Suc__mono__le,axiom,
    ! [A: $tType] :
      ( ( order @ A @ ( type2 @ A ) )
     => ! [F: nat > A,N: nat,N2: nat] :
          ( ! [N3: nat] : ( ord_less_eq @ A @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
         => ( ( ord_less_eq @ nat @ N @ N2 )
           => ( ord_less_eq @ A @ ( F @ N ) @ ( F @ N2 ) ) ) ) ) ).

% lift_Suc_mono_le
thf(fact_14_lift__Suc__antimono__le,axiom,
    ! [A: $tType] :
      ( ( order @ A @ ( type2 @ A ) )
     => ! [F: nat > A,N: nat,N2: nat] :
          ( ! [N3: nat] : ( ord_less_eq @ A @ ( F @ ( suc @ N3 ) ) @ ( F @ N3 ) )
         => ( ( ord_less_eq @ nat @ N @ N2 )
           => ( ord_less_eq @ A @ ( F @ N2 ) @ ( F @ N ) ) ) ) ) ).

% lift_Suc_antimono_le
thf(fact_15_nat_Oinject,axiom,
    ! [X2: nat,Y2: nat] :
      ( ( ( suc @ X2 )
        = ( suc @ Y2 ) )
      = ( X2 = Y2 ) ) ).

% nat.inject
thf(fact_16_old_Onat_Oinject,axiom,
    ! [Nat: nat,Nat2: nat] :
      ( ( ( suc @ Nat )
        = ( suc @ Nat2 ) )
      = ( Nat = Nat2 ) ) ).

% old.nat.inject
thf(fact_17_neq0__conv,axiom,
    ! [N: nat] :
      ( ( N
       != ( zero_zero @ nat ) )
      = ( ord_less @ nat @ ( zero_zero @ nat ) @ N ) ) ).

% neq0_conv
thf(fact_18_Suc__less__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less @ nat @ ( suc @ M ) @ ( suc @ N ) )
      = ( ord_less @ nat @ M @ N ) ) ).

% Suc_less_eq
thf(fact_19_Suc__mono,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less @ nat @ M @ N )
     => ( ord_less @ nat @ ( suc @ M ) @ ( suc @ N ) ) ) ).

% Suc_mono
thf(fact_20_lessI,axiom,
    ! [N: nat] : ( ord_less @ nat @ N @ ( suc @ N ) ) ).

% lessI
thf(fact_21_minWait__least,axiom,
    ! [N: nat,Rs: stream @ rule,S: state] :
      ( ( abstra1874422341nabled @ rule @ state @ eff @ ( shd @ rule @ ( sdrop @ rule @ N @ Rs ) ) @ S )
     => ( ord_less_eq @ nat @ ( abstra1332369113inWait @ rule @ state @ eff @ Rs @ S ) @ N ) ) ).

% minWait_least
thf(fact_22_le0,axiom,
    ! [N: nat] : ( ord_less_eq @ nat @ ( zero_zero @ nat ) @ N ) ).

% le0
thf(fact_23_add__is__0,axiom,
    ! [M: nat,N: nat] :
      ( ( ( plus_plus @ nat @ M @ N )
        = ( zero_zero @ nat ) )
      = ( ( M
          = ( zero_zero @ nat ) )
        & ( N
          = ( zero_zero @ nat ) ) ) ) ).

% add_is_0
thf(fact_24_Nat_Oadd__0__right,axiom,
    ! [M: nat] :
      ( ( plus_plus @ nat @ M @ ( zero_zero @ nat ) )
      = M ) ).

% Nat.add_0_right
thf(fact_25_add__Suc__right,axiom,
    ! [M: nat,N: nat] :
      ( ( plus_plus @ nat @ M @ ( suc @ N ) )
      = ( suc @ ( plus_plus @ nat @ M @ N ) ) ) ).

% add_Suc_right
thf(fact_26_diff__self__eq__0,axiom,
    ! [M: nat] :
      ( ( minus_minus @ nat @ M @ M )
      = ( zero_zero @ nat ) ) ).

% diff_self_eq_0
thf(fact_27_diff__0__eq__0,axiom,
    ! [N: nat] :
      ( ( minus_minus @ nat @ ( zero_zero @ nat ) @ N )
      = ( zero_zero @ nat ) ) ).

% diff_0_eq_0
thf(fact_28_nat__add__left__cancel__less,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less @ nat @ ( plus_plus @ nat @ K @ M ) @ ( plus_plus @ nat @ K @ N ) )
      = ( ord_less @ nat @ M @ N ) ) ).

% nat_add_left_cancel_less
thf(fact_29_nat__add__left__cancel__le,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_eq @ nat @ ( plus_plus @ nat @ K @ M ) @ ( plus_plus @ nat @ K @ N ) )
      = ( ord_less_eq @ nat @ M @ N ) ) ).

% nat_add_left_cancel_le
thf(fact_30_diff__diff__left,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( minus_minus @ nat @ ( minus_minus @ nat @ I @ J ) @ K )
      = ( minus_minus @ nat @ I @ ( plus_plus @ nat @ J @ K ) ) ) ).

% diff_diff_left
thf(fact_31_zero__less__Suc,axiom,
    ! [N: nat] : ( ord_less @ nat @ ( zero_zero @ nat ) @ ( suc @ N ) ) ).

% zero_less_Suc
thf(fact_32_less__Suc0,axiom,
    ! [N: nat] :
      ( ( ord_less @ nat @ N @ ( suc @ ( zero_zero @ nat ) ) )
      = ( N
        = ( zero_zero @ nat ) ) ) ).

% less_Suc0
thf(fact_33_add__gr__0,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less @ nat @ ( zero_zero @ nat ) @ ( plus_plus @ nat @ M @ N ) )
      = ( ( ord_less @ nat @ ( zero_zero @ nat ) @ M )
        | ( ord_less @ nat @ ( zero_zero @ nat ) @ N ) ) ) ).

% add_gr_0
thf(fact_34_zero__less__diff,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less @ nat @ ( zero_zero @ nat ) @ ( minus_minus @ nat @ N @ M ) )
      = ( ord_less @ nat @ M @ N ) ) ).

% zero_less_diff
thf(fact_35_diff__is__0__eq_H,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq @ nat @ M @ N )
     => ( ( minus_minus @ nat @ M @ N )
        = ( zero_zero @ nat ) ) ) ).

% diff_is_0_eq'
thf(fact_36_diff__is__0__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ( minus_minus @ nat @ M @ N )
        = ( zero_zero @ nat ) )
      = ( ord_less_eq @ nat @ M @ N ) ) ).

% diff_is_0_eq
thf(fact_37_Nat_Odiff__diff__right,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq @ nat @ K @ J )
     => ( ( minus_minus @ nat @ I @ ( minus_minus @ nat @ J @ K ) )
        = ( minus_minus @ nat @ ( plus_plus @ nat @ I @ K ) @ J ) ) ) ).

% Nat.diff_diff_right
thf(fact_38_Nat_Oadd__diff__assoc2,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq @ nat @ K @ J )
     => ( ( plus_plus @ nat @ ( minus_minus @ nat @ J @ K ) @ I )
        = ( minus_minus @ nat @ ( plus_plus @ nat @ J @ I ) @ K ) ) ) ).

% Nat.add_diff_assoc2
thf(fact_39_Nat_Oadd__diff__assoc,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq @ nat @ K @ J )
     => ( ( plus_plus @ nat @ I @ ( minus_minus @ nat @ J @ K ) )
        = ( minus_minus @ nat @ ( plus_plus @ nat @ I @ J ) @ K ) ) ) ).

% Nat.add_diff_assoc
thf(fact_40_Suc__pred,axiom,
    ! [N: nat] :
      ( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
     => ( ( suc @ ( minus_minus @ nat @ N @ ( suc @ ( zero_zero @ nat ) ) ) )
        = N ) ) ).

% Suc_pred
thf(fact_41_diff__Suc__diff__eq2,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq @ nat @ K @ J )
     => ( ( minus_minus @ nat @ ( suc @ ( minus_minus @ nat @ J @ K ) ) @ I )
        = ( minus_minus @ nat @ ( suc @ J ) @ ( plus_plus @ nat @ K @ I ) ) ) ) ).

% diff_Suc_diff_eq2
thf(fact_42_diff__Suc__diff__eq1,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq @ nat @ K @ J )
     => ( ( minus_minus @ nat @ I @ ( suc @ ( minus_minus @ nat @ J @ K ) ) )
        = ( minus_minus @ nat @ ( plus_plus @ nat @ I @ K ) @ ( suc @ J ) ) ) ) ).

% diff_Suc_diff_eq1
thf(fact_43_pickEff,axiom,
    ! [R: rule,S: state] :
      ( ( abstra1874422341nabled @ rule @ state @ eff @ R @ S )
     => ( eff @ R @ S @ ( abstra1276541928ickEff @ rule @ state @ eff @ R @ S ) ) ) ).

% pickEff
thf(fact_44_mem__Collect__eq,axiom,
    ! [A: $tType,A2: A,P2: A > $o] :
      ( ( member @ A @ A2 @ ( collect @ A @ P2 ) )
      = ( P2 @ A2 ) ) ).

% mem_Collect_eq
thf(fact_45_Collect__mem__eq,axiom,
    ! [A: $tType,A3: set @ A] :
      ( ( collect @ A
        @ ^ [X3: A] : ( member @ A @ X3 @ A3 ) )
      = A3 ) ).

% Collect_mem_eq
thf(fact_46_Collect__cong,axiom,
    ! [A: $tType,P2: A > $o,Q: A > $o] :
      ( ! [X4: A] :
          ( ( P2 @ X4 )
          = ( Q @ X4 ) )
     => ( ( collect @ A @ P2 )
        = ( collect @ A @ Q ) ) ) ).

% Collect_cong
thf(fact_47_gr0I,axiom,
    ! [N: nat] :
      ( ( N
       != ( zero_zero @ nat ) )
     => ( ord_less @ nat @ ( zero_zero @ nat ) @ N ) ) ).

% gr0I
thf(fact_48_not__gr0,axiom,
    ! [N: nat] :
      ( ( ~ ( ord_less @ nat @ ( zero_zero @ nat ) @ N ) )
      = ( N
        = ( zero_zero @ nat ) ) ) ).

% not_gr0
thf(fact_49_not__less0,axiom,
    ! [N: nat] :
      ~ ( ord_less @ nat @ N @ ( zero_zero @ nat ) ) ).

% not_less0
thf(fact_50_add__lessD1,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less @ nat @ ( plus_plus @ nat @ I @ J ) @ K )
     => ( ord_less @ nat @ I @ K ) ) ).

% add_lessD1
thf(fact_51_less__zeroE,axiom,
    ! [N: nat] :
      ~ ( ord_less @ nat @ N @ ( zero_zero @ nat ) ) ).

% less_zeroE
thf(fact_52_nat__neq__iff,axiom,
    ! [M: nat,N: nat] :
      ( ( M != N )
      = ( ( ord_less @ nat @ M @ N )
        | ( ord_less @ nat @ N @ M ) ) ) ).

% nat_neq_iff
thf(fact_53_add__less__mono,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ord_less @ nat @ I @ J )
     => ( ( ord_less @ nat @ K @ L )
       => ( ord_less @ nat @ ( plus_plus @ nat @ I @ K ) @ ( plus_plus @ nat @ J @ L ) ) ) ) ).

% add_less_mono
thf(fact_54_less__not__refl,axiom,
    ! [N: nat] :
      ~ ( ord_less @ nat @ N @ N ) ).

% less_not_refl
thf(fact_55_not__add__less1,axiom,
    ! [I: nat,J: nat] :
      ~ ( ord_less @ nat @ ( plus_plus @ nat @ I @ J ) @ I ) ).

% not_add_less1
thf(fact_56_not__add__less2,axiom,
    ! [J: nat,I: nat] :
      ~ ( ord_less @ nat @ ( plus_plus @ nat @ J @ I ) @ I ) ).

% not_add_less2
thf(fact_57_add__less__mono1,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less @ nat @ I @ J )
     => ( ord_less @ nat @ ( plus_plus @ nat @ I @ K ) @ ( plus_plus @ nat @ J @ K ) ) ) ).

% add_less_mono1
thf(fact_58_less__not__refl2,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less @ nat @ N @ M )
     => ( M != N ) ) ).

% less_not_refl2
thf(fact_59_less__not__refl3,axiom,
    ! [S: nat,T: nat] :
      ( ( ord_less @ nat @ S @ T )
     => ( S != T ) ) ).

% less_not_refl3
thf(fact_60_measure__induct,axiom,
    ! [A: $tType,F: A > nat,P2: A > $o,A2: A] :
      ( ! [X4: A] :
          ( ! [Y: A] :
              ( ( ord_less @ nat @ ( F @ Y ) @ ( F @ X4 ) )
             => ( P2 @ Y ) )
         => ( P2 @ X4 ) )
     => ( P2 @ A2 ) ) ).

% measure_induct
thf(fact_61_plus__nat_Oadd__0,axiom,
    ! [N: nat] :
      ( ( plus_plus @ nat @ ( zero_zero @ nat ) @ N )
      = N ) ).

% plus_nat.add_0
thf(fact_62_gr__implies__not0,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less @ nat @ M @ N )
     => ( N
       != ( zero_zero @ nat ) ) ) ).

% gr_implies_not0
thf(fact_63_less__irrefl__nat,axiom,
    ! [N: nat] :
      ~ ( ord_less @ nat @ N @ N ) ).

% less_irrefl_nat
thf(fact_64_nat__less__induct,axiom,
    ! [P2: nat > $o,N: nat] :
      ( ! [N3: nat] :
          ( ! [M3: nat] :
              ( ( ord_less @ nat @ M3 @ N3 )
             => ( P2 @ M3 ) )
         => ( P2 @ N3 ) )
     => ( P2 @ N ) ) ).

% nat_less_induct
thf(fact_65_trans__less__add1,axiom,
    ! [I: nat,J: nat,M: nat] :
      ( ( ord_less @ nat @ I @ J )
     => ( ord_less @ nat @ I @ ( plus_plus @ nat @ J @ M ) ) ) ).

% trans_less_add1
thf(fact_66_trans__less__add2,axiom,
    ! [I: nat,J: nat,M: nat] :
      ( ( ord_less @ nat @ I @ J )
     => ( ord_less @ nat @ I @ ( plus_plus @ nat @ M @ J ) ) ) ).

% trans_less_add2
thf(fact_67_add__eq__self__zero,axiom,
    ! [M: nat,N: nat] :
      ( ( ( plus_plus @ nat @ M @ N )
        = M )
     => ( N
        = ( zero_zero @ nat ) ) ) ).

% add_eq_self_zero
thf(fact_68_infinite__descent,axiom,
    ! [P2: nat > $o,N: nat] :
      ( ! [N3: nat] :
          ( ~ ( P2 @ N3 )
         => ? [M3: nat] :
              ( ( ord_less @ nat @ M3 @ N3 )
              & ~ ( P2 @ M3 ) ) )
     => ( P2 @ N ) ) ).

% infinite_descent
thf(fact_69_less__add__eq__less,axiom,
    ! [K: nat,L: nat,M: nat,N: nat] :
      ( ( ord_less @ nat @ K @ L )
     => ( ( ( plus_plus @ nat @ M @ L )
          = ( plus_plus @ nat @ K @ N ) )
       => ( ord_less @ nat @ M @ N ) ) ) ).

% less_add_eq_less
thf(fact_70_infinite__descent0,axiom,
    ! [P2: nat > $o,N: nat] :
      ( ( P2 @ ( zero_zero @ nat ) )
     => ( ! [N3: nat] :
            ( ( ord_less @ nat @ ( zero_zero @ nat ) @ N3 )
           => ( ~ ( P2 @ N3 )
             => ? [M3: nat] :
                  ( ( ord_less @ nat @ M3 @ N3 )
                  & ~ ( P2 @ M3 ) ) ) )
       => ( P2 @ N ) ) ) ).

% infinite_descent0
thf(fact_71_linorder__neqE__nat,axiom,
    ! [X5: nat,Y3: nat] :
      ( ( X5 != Y3 )
     => ( ~ ( ord_less @ nat @ X5 @ Y3 )
       => ( ord_less @ nat @ Y3 @ X5 ) ) ) ).

% linorder_neqE_nat
thf(fact_72_less__nat__zero__code,axiom,
    ! [N: nat] :
      ~ ( ord_less @ nat @ N @ ( zero_zero @ nat ) ) ).

% less_nat_zero_code
thf(fact_73_measure__induct__rule,axiom,
    ! [A: $tType,F: A > nat,P2: A > $o,A2: A] :
      ( ! [X4: A] :
          ( ! [Y: A] :
              ( ( ord_less @ nat @ ( F @ Y ) @ ( F @ X4 ) )
             => ( P2 @ Y ) )
         => ( P2 @ X4 ) )
     => ( P2 @ A2 ) ) ).

% measure_induct_rule
thf(fact_74_nat__add__left__cancel,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ( plus_plus @ nat @ K @ M )
        = ( plus_plus @ nat @ K @ N ) )
      = ( M = N ) ) ).

% nat_add_left_cancel
thf(fact_75_nat__add__right__cancel,axiom,
    ! [M: nat,K: nat,N: nat] :
      ( ( ( plus_plus @ nat @ M @ K )
        = ( plus_plus @ nat @ N @ K ) )
      = ( M = N ) ) ).

% nat_add_right_cancel
thf(fact_76_less__imp__add__positive,axiom,
    ! [I: nat,J: nat] :
      ( ( ord_less @ nat @ I @ J )
     => ? [K2: nat] :
          ( ( ord_less @ nat @ ( zero_zero @ nat ) @ K2 )
          & ( ( plus_plus @ nat @ I @ K2 )
            = J ) ) ) ).

% less_imp_add_positive
thf(fact_77_infinite__descent__measure,axiom,
    ! [A: $tType,P2: A > $o,V: A > nat,X5: A] :
      ( ! [X4: A] :
          ( ~ ( P2 @ X4 )
         => ? [Y: A] :
              ( ( ord_less @ nat @ ( V @ Y ) @ ( V @ X4 ) )
              & ~ ( P2 @ Y ) ) )
     => ( P2 @ X5 ) ) ).

% infinite_descent_measure
thf(fact_78_infinite__descent0__measure,axiom,
    ! [A: $tType,V: A > nat,P2: A > $o,X5: A] :
      ( ! [X4: A] :
          ( ( ( V @ X4 )
            = ( zero_zero @ nat ) )
         => ( P2 @ X4 ) )
     => ( ! [X4: A] :
            ( ( ord_less @ nat @ ( zero_zero @ nat ) @ ( V @ X4 ) )
           => ( ~ ( P2 @ X4 )
             => ? [Y: A] :
                  ( ( ord_less @ nat @ ( V @ Y ) @ ( V @ X4 ) )
                  & ~ ( P2 @ Y ) ) ) )
       => ( P2 @ X5 ) ) ) ).

% infinite_descent0_measure
thf(fact_79_lift__Suc__mono__less,axiom,
    ! [A: $tType] :
      ( ( order @ A @ ( type2 @ A ) )
     => ! [F: nat > A,N: nat,N2: nat] :
          ( ! [N3: nat] : ( ord_less @ A @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
         => ( ( ord_less @ nat @ N @ N2 )
           => ( ord_less @ A @ ( F @ N ) @ ( F @ N2 ) ) ) ) ) ).

% lift_Suc_mono_less
thf(fact_80_lift__Suc__mono__less__iff,axiom,
    ! [A: $tType] :
      ( ( order @ A @ ( type2 @ A ) )
     => ! [F: nat > A,N: nat,M: nat] :
          ( ! [N3: nat] : ( ord_less @ A @ ( F @ N3 ) @ ( F @ ( suc @ N3 ) ) )
         => ( ( ord_less @ A @ ( F @ N ) @ ( F @ M ) )
            = ( ord_less @ nat @ N @ M ) ) ) ) ).

% lift_Suc_mono_less_iff
thf(fact_81_nat__diff__split__asm,axiom,
    ! [P2: nat > $o,A2: nat,B: nat] :
      ( ( P2 @ ( minus_minus @ nat @ A2 @ B ) )
      = ( ~ ( ( ( ord_less @ nat @ A2 @ B )
              & ~ ( P2 @ ( zero_zero @ nat ) ) )
            | ? [D: nat] :
                ( ( A2
                  = ( plus_plus @ nat @ B @ D ) )
                & ~ ( P2 @ D ) ) ) ) ) ).

% nat_diff_split_asm
thf(fact_82_nat__diff__split,axiom,
    ! [P2: nat > $o,A2: nat,B: nat] :
      ( ( P2 @ ( minus_minus @ nat @ A2 @ B ) )
      = ( ( ( ord_less @ nat @ A2 @ B )
         => ( P2 @ ( zero_zero @ nat ) ) )
        & ! [D: nat] :
            ( ( A2
              = ( plus_plus @ nat @ B @ D ) )
           => ( P2 @ D ) ) ) ) ).

% nat_diff_split
thf(fact_83_RuleSystem__Defs_Oenabled__def,axiom,
    ! [State: $tType,Rule: $tType] :
      ( ( abstra1874422341nabled @ Rule @ State )
      = ( ^ [Eff: Rule > State > ( fset @ State ) > $o,R2: Rule,S2: State] :
            ( ^ [P: ( fset @ State ) > $o] :
              ? [X: fset @ State] : ( P @ X )
            @ ( Eff @ R2 @ S2 ) ) ) ) ).

% RuleSystem_Defs.enabled_def
thf(fact_84_less__imp__Suc__add,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less @ nat @ M @ N )
     => ? [K2: nat] :
          ( N
          = ( suc @ ( plus_plus @ nat @ M @ K2 ) ) ) ) ).

% less_imp_Suc_add
thf(fact_85_less__iff__Suc__add,axiom,
    ( ( ord_less @ nat )
    = ( ^ [M4: nat,N4: nat] :
        ? [K3: nat] :
          ( N4
          = ( suc @ ( plus_plus @ nat @ M4 @ K3 ) ) ) ) ) ).

% less_iff_Suc_add
thf(fact_86_less__add__Suc2,axiom,
    ! [I: nat,M: nat] : ( ord_less @ nat @ I @ ( suc @ ( plus_plus @ nat @ M @ I ) ) ) ).

% less_add_Suc2
thf(fact_87_less__add__Suc1,axiom,
    ! [I: nat,M: nat] : ( ord_less @ nat @ I @ ( suc @ ( plus_plus @ nat @ I @ M ) ) ) ).

% less_add_Suc1
thf(fact_88_less__Suc__eq__0__disj,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less @ nat @ M @ ( suc @ N ) )
      = ( ( M
          = ( zero_zero @ nat ) )
        | ? [J2: nat] :
            ( ( M
              = ( suc @ J2 ) )
            & ( ord_less @ nat @ J2 @ N ) ) ) ) ).

% less_Suc_eq_0_disj
thf(fact_89_gr0__implies__Suc,axiom,
    ! [N: nat] :
      ( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
     => ? [M2: nat] :
          ( N
          = ( suc @ M2 ) ) ) ).

% gr0_implies_Suc
thf(fact_90_gr0__conv__Suc,axiom,
    ! [N: nat] :
      ( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
      = ( ? [M4: nat] :
            ( N
            = ( suc @ M4 ) ) ) ) ).

% gr0_conv_Suc
thf(fact_91_mono__nat__linear__lb,axiom,
    ! [F: nat > nat,M: nat,K: nat] :
      ( ! [M2: nat,N3: nat] :
          ( ( ord_less @ nat @ M2 @ N3 )
         => ( ord_less @ nat @ ( F @ M2 ) @ ( F @ N3 ) ) )
     => ( ord_less_eq @ nat @ ( plus_plus @ nat @ ( F @ M ) @ K ) @ ( F @ ( plus_plus @ nat @ M @ K ) ) ) ) ).

% mono_nat_linear_lb
thf(fact_92_ex__least__nat__le,axiom,
    ! [P2: nat > $o,N: nat] :
      ( ~ ( P2 @ ( zero_zero @ nat ) )
     => ( ( P2 @ N )
       => ? [K2: nat] :
            ( ( ord_less_eq @ nat @ K2 @ N )
            & ! [I2: nat] :
                ( ( ord_less @ nat @ I2 @ K2 )
               => ~ ( P2 @ I2 ) )
            & ( P2 @ K2 ) ) ) ) ).

% ex_least_nat_le
thf(fact_93_add__diff__inverse__nat,axiom,
    ! [M: nat,N: nat] :
      ( ~ ( ord_less @ nat @ M @ N )
     => ( ( plus_plus @ nat @ N @ ( minus_minus @ nat @ M @ N ) )
        = M ) ) ).

% add_diff_inverse_nat
thf(fact_94_less__diff__conv,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less @ nat @ I @ ( minus_minus @ nat @ J @ K ) )
      = ( ord_less @ nat @ ( plus_plus @ nat @ I @ K ) @ J ) ) ).

% less_diff_conv
thf(fact_95_diff__less,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
     => ( ( ord_less @ nat @ ( zero_zero @ nat ) @ M )
       => ( ord_less @ nat @ ( minus_minus @ nat @ M @ N ) @ M ) ) ) ).

% diff_less
thf(fact_96_not__less__less__Suc__eq,axiom,
    ! [N: nat,M: nat] :
      ( ~ ( ord_less @ nat @ N @ M )
     => ( ( ord_less @ nat @ N @ ( suc @ M ) )
        = ( N = M ) ) ) ).

% not_less_less_Suc_eq
thf(fact_97_strict__inc__induct,axiom,
    ! [I: nat,J: nat,P2: nat > $o] :
      ( ( ord_less @ nat @ I @ J )
     => ( ! [I3: nat] :
            ( ( J
              = ( suc @ I3 ) )
           => ( P2 @ I3 ) )
       => ( ! [I3: nat] :
              ( ( ord_less @ nat @ I3 @ J )
             => ( ( P2 @ ( suc @ I3 ) )
               => ( P2 @ I3 ) ) )
         => ( P2 @ I ) ) ) ) ).

% strict_inc_induct
thf(fact_98_less__Suc__induct,axiom,
    ! [I: nat,J: nat,P2: nat > nat > $o] :
      ( ( ord_less @ nat @ I @ J )
     => ( ! [I3: nat] : ( P2 @ I3 @ ( suc @ I3 ) )
       => ( ! [I3: nat,J3: nat,K2: nat] :
              ( ( ord_less @ nat @ I3 @ J3 )
             => ( ( ord_less @ nat @ J3 @ K2 )
               => ( ( P2 @ I3 @ J3 )
                 => ( ( P2 @ J3 @ K2 )
                   => ( P2 @ I3 @ K2 ) ) ) ) )
         => ( P2 @ I @ J ) ) ) ) ).

% less_Suc_induct
thf(fact_99_less__trans__Suc,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less @ nat @ I @ J )
     => ( ( ord_less @ nat @ J @ K )
       => ( ord_less @ nat @ ( suc @ I ) @ K ) ) ) ).

% less_trans_Suc
thf(fact_100_Suc__less__SucD,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less @ nat @ ( suc @ M ) @ ( suc @ N ) )
     => ( ord_less @ nat @ M @ N ) ) ).

% Suc_less_SucD
thf(fact_101_less__antisym,axiom,
    ! [N: nat,M: nat] :
      ( ~ ( ord_less @ nat @ N @ M )
     => ( ( ord_less @ nat @ N @ ( suc @ M ) )
       => ( M = N ) ) ) ).

% less_antisym
thf(fact_102_Suc__less__eq2,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less @ nat @ ( suc @ N ) @ M )
      = ( ? [M5: nat] :
            ( ( M
              = ( suc @ M5 ) )
            & ( ord_less @ nat @ N @ M5 ) ) ) ) ).

% Suc_less_eq2
thf(fact_103_not__less__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ~ ( ord_less @ nat @ M @ N ) )
      = ( ord_less @ nat @ N @ ( suc @ M ) ) ) ).

% not_less_eq
thf(fact_104_less__Suc__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less @ nat @ M @ ( suc @ N ) )
      = ( ( ord_less @ nat @ M @ N )
        | ( M = N ) ) ) ).

% less_Suc_eq
thf(fact_105_less__SucI,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less @ nat @ M @ N )
     => ( ord_less @ nat @ M @ ( suc @ N ) ) ) ).

% less_SucI
thf(fact_106_less__SucE,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less @ nat @ M @ ( suc @ N ) )
     => ( ~ ( ord_less @ nat @ M @ N )
       => ( M = N ) ) ) ).

% less_SucE
thf(fact_107_Suc__lessI,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less @ nat @ M @ N )
     => ( ( ( suc @ M )
         != N )
       => ( ord_less @ nat @ ( suc @ M ) @ N ) ) ) ).

% Suc_lessI
thf(fact_108_Suc__lessE,axiom,
    ! [I: nat,K: nat] :
      ( ( ord_less @ nat @ ( suc @ I ) @ K )
     => ~ ! [J3: nat] :
            ( ( ord_less @ nat @ I @ J3 )
           => ( K
             != ( suc @ J3 ) ) ) ) ).

% Suc_lessE
thf(fact_109_Suc__lessD,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less @ nat @ ( suc @ M ) @ N )
     => ( ord_less @ nat @ M @ N ) ) ).

% Suc_lessD
thf(fact_110_lessE,axiom,
    ! [I: nat,K: nat] :
      ( ( ord_less @ nat @ I @ K )
     => ( ( K
         != ( suc @ I ) )
       => ~ ! [J3: nat] :
              ( ( ord_less @ nat @ I @ J3 )
             => ( K
               != ( suc @ J3 ) ) ) ) ) ).

% lessE
thf(fact_111_less__mono__imp__le__mono,axiom,
    ! [F: nat > nat,I: nat,J: nat] :
      ( ! [I3: nat,J3: nat] :
          ( ( ord_less @ nat @ I3 @ J3 )
         => ( ord_less @ nat @ ( F @ I3 ) @ ( F @ J3 ) ) )
     => ( ( ord_less_eq @ nat @ I @ J )
       => ( ord_less_eq @ nat @ ( F @ I ) @ ( F @ J ) ) ) ) ).

% less_mono_imp_le_mono
thf(fact_112_le__neq__implies__less,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq @ nat @ M @ N )
     => ( ( M != N )
       => ( ord_less @ nat @ M @ N ) ) ) ).

% le_neq_implies_less
thf(fact_113_less__or__eq__imp__le,axiom,
    ! [M: nat,N: nat] :
      ( ( ( ord_less @ nat @ M @ N )
        | ( M = N ) )
     => ( ord_less_eq @ nat @ M @ N ) ) ).

% less_or_eq_imp_le
thf(fact_114_le__eq__less__or__eq,axiom,
    ( ( ord_less_eq @ nat )
    = ( ^ [M4: nat,N4: nat] :
          ( ( ord_less @ nat @ M4 @ N4 )
          | ( M4 = N4 ) ) ) ) ).

% le_eq_less_or_eq
thf(fact_115_less__imp__le__nat,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less @ nat @ M @ N )
     => ( ord_less_eq @ nat @ M @ N ) ) ).

% less_imp_le_nat
thf(fact_116_nat__less__le,axiom,
    ( ( ord_less @ nat )
    = ( ^ [M4: nat,N4: nat] :
          ( ( ord_less_eq @ nat @ M4 @ N4 )
          & ( M4 != N4 ) ) ) ) ).

% nat_less_le
thf(fact_117_less__imp__diff__less,axiom,
    ! [J: nat,K: nat,N: nat] :
      ( ( ord_less @ nat @ J @ K )
     => ( ord_less @ nat @ ( minus_minus @ nat @ J @ N ) @ K ) ) ).

% less_imp_diff_less
thf(fact_118_diff__less__mono2,axiom,
    ! [M: nat,N: nat,L: nat] :
      ( ( ord_less @ nat @ M @ N )
     => ( ( ord_less @ nat @ M @ L )
       => ( ord_less @ nat @ ( minus_minus @ nat @ L @ N ) @ ( minus_minus @ nat @ L @ M ) ) ) ) ).

% diff_less_mono2
thf(fact_119_one__is__add,axiom,
    ! [M: nat,N: nat] :
      ( ( ( suc @ ( zero_zero @ nat ) )
        = ( plus_plus @ nat @ M @ N ) )
      = ( ( ( M
            = ( suc @ ( zero_zero @ nat ) ) )
          & ( N
            = ( zero_zero @ nat ) ) )
        | ( ( M
            = ( zero_zero @ nat ) )
          & ( N
            = ( suc @ ( zero_zero @ nat ) ) ) ) ) ) ).

% one_is_add
thf(fact_120_add__is__1,axiom,
    ! [M: nat,N: nat] :
      ( ( ( plus_plus @ nat @ M @ N )
        = ( suc @ ( zero_zero @ nat ) ) )
      = ( ( ( M
            = ( suc @ ( zero_zero @ nat ) ) )
          & ( N
            = ( zero_zero @ nat ) ) )
        | ( ( M
            = ( zero_zero @ nat ) )
          & ( N
            = ( suc @ ( zero_zero @ nat ) ) ) ) ) ) ).

% add_is_1
thf(fact_121_less__diff__conv2,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq @ nat @ K @ J )
     => ( ( ord_less @ nat @ ( minus_minus @ nat @ J @ K ) @ I )
        = ( ord_less @ nat @ J @ ( plus_plus @ nat @ I @ K ) ) ) ) ).

% less_diff_conv2
thf(fact_122_diff__add__0,axiom,
    ! [N: nat,M: nat] :
      ( ( minus_minus @ nat @ N @ ( plus_plus @ nat @ N @ M ) )
      = ( zero_zero @ nat ) ) ).

% diff_add_0
thf(fact_123_diff__Suc__less,axiom,
    ! [N: nat,I: nat] :
      ( ( ord_less @ nat @ ( zero_zero @ nat ) @ N )
     => ( ord_less @ nat @ ( minus_minus @ nat @ N @ ( suc @ I ) ) @ N ) ) ).

% diff_Suc_less
thf(fact_124_le__imp__less__Suc,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq @ nat @ M @ N )
     => ( ord_less @ nat @ M @ ( suc @ N ) ) ) ).

% le_imp_less_Suc
thf(fact_125_less__eq__Suc__le,axiom,
    ( ( ord_less @ nat )
    = ( ^ [N4: nat] : ( ord_less_eq @ nat @ ( suc @ N4 ) ) ) ) ).

% less_eq_Suc_le
thf(fact_126_less__Suc__eq__le,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less @ nat @ M @ ( suc @ N ) )
      = ( ord_less_eq @ nat @ M @ N ) ) ).

% less_Suc_eq_le
thf(fact_127_le__less__Suc__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq @ nat @ M @ N )
     => ( ( ord_less @ nat @ N @ ( suc @ M ) )
        = ( N = M ) ) ) ).

% le_less_Suc_eq
thf(fact_128_Suc__le__lessD,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq @ nat @ ( suc @ M ) @ N )
     => ( ord_less @ nat @ M @ N ) ) ).

% Suc_le_lessD
thf(fact_129_inc__induct,axiom,
    ! [I: nat,J: nat,P2: nat > $o] :
      ( ( ord_less_eq @ nat @ I @ J )
     => ( ( P2 @ J )
       => ( ! [N3: nat] :
              ( ( ord_less_eq @ nat @ I @ N3 )
             => ( ( ord_less @ nat @ N3 @ J )
               => ( ( P2 @ ( suc @ N3 ) )
                 => ( P2 @ N3 ) ) ) )
         => ( P2 @ I ) ) ) ) ).

% inc_induct
thf(fact_130_dec__induct,axiom,
    ! [I: nat,J: nat,P2: nat > $o] :
      ( ( ord_less_eq @ nat @ I @ J )
     => ( ( P2 @ I )
       => ( ! [N3: nat] :
              ( ( ord_less_eq @ nat @ I @ N3 )
             => ( ( ord_less @ nat @ N3 @ J )
               => ( ( P2 @ N3 )
                 => ( P2 @ ( suc @ N3 ) ) ) ) )
         => ( P2 @ J ) ) ) ) ).

% dec_induct
thf(fact_131_Suc__le__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq @ nat @ ( suc @ M ) @ N )
      = ( ord_less @ nat @ M @ N ) ) ).

% Suc_le_eq
thf(fact_132_Suc__leI,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less @ nat @ M @ N )
     => ( ord_less_eq @ nat @ ( suc @ M ) @ N ) ) ).

% Suc_leI
thf(fact_133_diff__less__Suc,axiom,
    ! [M: nat,N: nat] : ( ord_less @ nat @ ( minus_minus @ nat @ M @ N ) @ ( suc @ M ) ) ).

% diff_less_Suc
thf(fact_134_Suc__diff__Suc,axiom,
    ! [N: nat,M: nat] :
      ( ( ord_less @ nat @ N @ M )
     => ( ( suc @ ( minus_minus @ nat @ M @ ( suc @ N ) ) )
        = ( minus_minus @ nat @ M @ N ) ) ) ).

% Suc_diff_Suc
thf(fact_135_diff__less__mono,axiom,
    ! [A2: nat,B: nat,C: nat] :
      ( ( ord_less @ nat @ A2 @ B )
     => ( ( ord_less_eq @ nat @ C @ A2 )
       => ( ord_less @ nat @ ( minus_minus @ nat @ A2 @ C ) @ ( minus_minus @ nat @ B @ C ) ) ) ) ).

% diff_less_mono
thf(fact_136_less__diff__iff,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_eq @ nat @ K @ M )
     => ( ( ord_less_eq @ nat @ K @ N )
       => ( ( ord_less @ nat @ ( minus_minus @ nat @ M @ K ) @ ( minus_minus @ nat @ N @ K ) )
          = ( ord_less @ nat @ M @ N ) ) ) ) ).

% less_diff_iff
thf(fact_137_add__Suc,axiom,
    ! [M: nat,N: nat] :
      ( ( plus_plus @ nat @ ( suc @ M ) @ N )
      = ( suc @ ( plus_plus @ nat @ M @ N ) ) ) ).

% add_Suc
thf(fact_138_add__Suc__shift,axiom,
    ! [M: nat,N: nat] :
      ( ( plus_plus @ nat @ ( suc @ M ) @ N )
      = ( plus_plus @ nat @ M @ ( suc @ N ) ) ) ).

% add_Suc_shift
thf(fact_139_nat__le__iff__add,axiom,
    ( ( ord_less_eq @ nat )
    = ( ^ [M4: nat,N4: nat] :
        ? [K3: nat] :
          ( N4
          = ( plus_plus @ nat @ M4 @ K3 ) ) ) ) ).

% nat_le_iff_add
thf(fact_140_trans__le__add2,axiom,
    ! [I: nat,J: nat,M: nat] :
      ( ( ord_less_eq @ nat @ I @ J )
     => ( ord_less_eq @ nat @ I @ ( plus_plus @ nat @ M @ J ) ) ) ).

% trans_le_add2
thf(fact_141_trans__le__add1,axiom,
    ! [I: nat,J: nat,M: nat] :
      ( ( ord_less_eq @ nat @ I @ J )
     => ( ord_less_eq @ nat @ I @ ( plus_plus @ nat @ J @ M ) ) ) ).

% trans_le_add1
thf(fact_142_add__le__mono1,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_eq @ nat @ I @ J )
     => ( ord_less_eq @ nat @ ( plus_plus @ nat @ I @ K ) @ ( plus_plus @ nat @ J @ K ) ) ) ).

% add_le_mono1
thf(fact_143_add__le__mono,axiom,
    ! [I: nat,J: nat,K: nat,L: nat] :
      ( ( ord_less_eq @ nat @ I @ J )
     => ( ( ord_less_eq @ nat @ K @ L )
       => ( ord_less_eq @ nat @ ( plus_plus @ nat @ I @ K ) @ ( plus_plus @ nat @ J @ L ) ) ) ) ).

% add_le_mono
thf(fact_144_le__Suc__ex,axiom,
    ! [K: nat,L: nat] :
      ( ( ord_less_eq @ nat @ K @ L )
     => ? [N3: nat] :
          ( L
          = ( plus_plus @ nat @ K @ N3 ) ) ) ).

% le_Suc_ex
thf(fact_145_add__leD2,axiom,
    ! [M: nat,K: nat,N: nat] :
      ( ( ord_less_eq @ nat @ ( plus_plus @ nat @ M @ K ) @ N )
     => ( ord_less_eq @ nat @ K @ N ) ) ).

% add_leD2
thf(fact_146_add__leD1,axiom,
    ! [M: nat,K: nat,N: nat] :
      ( ( ord_less_eq @ nat @ ( plus_plus @ nat @ M @ K ) @ N )
     => ( ord_less_eq @ nat @ M @ N ) ) ).

% add_leD1
thf(fact_147_le__add2,axiom,
    ! [N: nat,M: nat] : ( ord_less_eq @ nat @ N @ ( plus_plus @ nat @ M @ N ) ) ).

% le_add2
thf(fact_148_le__add1,axiom,
    ! [N: nat,M: nat] : ( ord_less_eq @ nat @ N @ ( plus_plus @ nat @ N @ M ) ) ).

% le_add1
thf(fact_149_add__leE,axiom,
    ! [M: nat,K: nat,N: nat] :
      ( ( ord_less_eq @ nat @ ( plus_plus @ nat @ M @ K ) @ N )
     => ~ ( ( ord_less_eq @ nat @ M @ N )
         => ~ ( ord_less_eq @ nat @ K @ N ) ) ) ).

% add_leE
thf(fact_150_list__decode_Ocases,axiom,
    ! [X5: nat] :
      ( ( X5
       != ( zero_zero @ nat ) )
     => ~ ! [N3: nat] :
            ( X5
           != ( suc @ N3 ) ) ) ).

% list_decode.cases
thf(fact_151_not0__implies__Suc,axiom,
    ! [N: nat] :
      ( ( N
       != ( zero_zero @ nat ) )
     => ? [M2: nat] :
          ( N
          = ( suc @ M2 ) ) ) ).

% not0_implies_Suc
thf(fact_152_old_Onat_Oinducts,axiom,
    ! [P2: nat > $o,Nat: nat] :
      ( ( P2 @ ( zero_zero @ nat ) )
     => ( ! [Nat3: nat] :
            ( ( P2 @ Nat3 )
           => ( P2 @ ( suc @ Nat3 ) ) )
       => ( P2 @ Nat ) ) ) ).

% old.nat.inducts
thf(fact_153_old_Onat_Oexhaust,axiom,
    ! [Y3: nat] :
      ( ( Y3
       != ( zero_zero @ nat ) )
     => ~ ! [Nat3: nat] :
            ( Y3
           != ( suc @ Nat3 ) ) ) ).

% old.nat.exhaust
thf(fact_154_Zero__not__Suc,axiom,
    ! [M: nat] :
      ( ( zero_zero @ nat )
     != ( suc @ M ) ) ).

% Zero_not_Suc
thf(fact_155_Zero__neq__Suc,axiom,
    ! [M: nat] :
      ( ( zero_zero @ nat )
     != ( suc @ M ) ) ).

% Zero_neq_Suc
thf(fact_156_Suc__neq__Zero,axiom,
    ! [M: nat] :
      ( ( suc @ M )
     != ( zero_zero @ nat ) ) ).

% Suc_neq_Zero
thf(fact_157_zero__induct,axiom,
    ! [P2: nat > $o,K: nat] :
      ( ( P2 @ K )
     => ( ! [N3: nat] :
            ( ( P2 @ ( suc @ N3 ) )
           => ( P2 @ N3 ) )
       => ( P2 @ ( zero_zero @ nat ) ) ) ) ).

% zero_induct
thf(fact_158_diff__induct,axiom,
    ! [P2: nat > nat > $o,M: nat,N: nat] :
      ( ! [X4: nat] : ( P2 @ X4 @ ( zero_zero @ nat ) )
     => ( ! [Y4: nat] : ( P2 @ ( zero_zero @ nat ) @ ( suc @ Y4 ) )
       => ( ! [X4: nat,Y4: nat] :
              ( ( P2 @ X4 @ Y4 )
             => ( P2 @ ( suc @ X4 ) @ ( suc @ Y4 ) ) )
         => ( P2 @ M @ N ) ) ) ) ).

% diff_induct
thf(fact_159_nat__induct,axiom,
    ! [P2: nat > $o,N: nat] :
      ( ( P2 @ ( zero_zero @ nat ) )
     => ( ! [N3: nat] :
            ( ( P2 @ N3 )
           => ( P2 @ ( suc @ N3 ) ) )
       => ( P2 @ N ) ) ) ).

% nat_induct
thf(fact_160_nat_OdiscI,axiom,
    ! [Nat: nat,X2: nat] :
      ( ( Nat
        = ( suc @ X2 ) )
     => ( Nat
       != ( zero_zero @ nat ) ) ) ).

% nat.discI
thf(fact_161_old_Onat_Odistinct_I1_J,axiom,
    ! [Nat2: nat] :
      ( ( zero_zero @ nat )
     != ( suc @ Nat2 ) ) ).

% old.nat.distinct(1)
thf(fact_162_old_Onat_Odistinct_I2_J,axiom,
    ! [Nat4: nat] :
      ( ( suc @ Nat4 )
     != ( zero_zero @ nat ) ) ).

% old.nat.distinct(2)
thf(fact_163_nat_Odistinct_I1_J,axiom,
    ! [X2: nat] :
      ( ( zero_zero @ nat )
     != ( suc @ X2 ) ) ).

% nat.distinct(1)
thf(fact_164_diff__add__inverse2,axiom,
    ! [M: nat,N: nat] :
      ( ( minus_minus @ nat @ ( plus_plus @ nat @ M @ N ) @ N )
      = M ) ).

% diff_add_inverse2
thf(fact_165_diff__add__inverse,axiom,
    ! [N: nat,M: nat] :
      ( ( minus_minus @ nat @ ( plus_plus @ nat @ N @ M ) @ N )
      = M ) ).

% diff_add_inverse
thf(fact_166_diff__cancel2,axiom,
    ! [M: nat,K: nat,N: nat] :
      ( ( minus_minus @ nat @ ( plus_plus @ nat @ M @ K ) @ ( plus_plus @ nat @ N @ K ) )
      = ( minus_minus @ nat @ M @ N ) ) ).

% diff_cancel2
thf(fact_167_Nat_Odiff__cancel,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( minus_minus @ nat @ ( plus_plus @ nat @ K @ M ) @ ( plus_plus @ nat @ K @ N ) )
      = ( minus_minus @ nat @ M @ N ) ) ).

% Nat.diff_cancel
thf(fact_168_le__0__eq,axiom,
    ! [N: nat] :
      ( ( ord_less_eq @ nat @ N @ ( zero_zero @ nat ) )
      = ( N
        = ( zero_zero @ nat ) ) ) ).

% le_0_eq
thf(fact_169_less__eq__nat_Osimps_I1_J,axiom,
    ! [N: nat] : ( ord_less_eq @ nat @ ( zero_zero @ nat ) @ N ) ).

% less_eq_nat.simps(1)
thf(fact_170_minus__nat_Odiff__0,axiom,
    ! [M: nat] :
      ( ( minus_minus @ nat @ M @ ( zero_zero @ nat ) )
      = M ) ).

% minus_nat.diff_0
thf(fact_171_diffs0__imp__equal,axiom,
    ! [M: nat,N: nat] :
      ( ( ( minus_minus @ nat @ M @ N )
        = ( zero_zero @ nat ) )
     => ( ( ( minus_minus @ nat @ N @ M )
          = ( zero_zero @ nat ) )
       => ( M = N ) ) ) ).

% diffs0_imp_equal
thf(fact_172_n__not__Suc__n,axiom,
    ! [N: nat] :
      ( N
     != ( suc @ N ) ) ).

% n_not_Suc_n
thf(fact_173_Suc__inject,axiom,
    ! [X5: nat,Y3: nat] :
      ( ( ( suc @ X5 )
        = ( suc @ Y3 ) )
     => ( X5 = Y3 ) ) ).

% Suc_inject
thf(fact_174_nat__le__linear,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq @ nat @ M @ N )
      | ( ord_less_eq @ nat @ N @ M ) ) ).

% nat_le_linear
thf(fact_175_le__antisym,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq @ nat @ M @ N )
     => ( ( ord_less_eq @ nat @ N @ M )
       => ( M = N ) ) ) ).

% le_antisym
thf(fact_176_eq__imp__le,axiom,
    ! [M: nat,N: nat] :
      ( ( M = N )
     => ( ord_less_eq @ nat @ M @ N ) ) ).

% eq_imp_le
thf(fact_177_le__trans,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_eq @ nat @ I @ J )
     => ( ( ord_less_eq @ nat @ J @ K )
       => ( ord_less_eq @ nat @ I @ K ) ) ) ).

% le_trans
thf(fact_178_le__refl,axiom,
    ! [N: nat] : ( ord_less_eq @ nat @ N @ N ) ).

% le_refl
thf(fact_179_diff__commute,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( minus_minus @ nat @ ( minus_minus @ nat @ I @ J ) @ K )
      = ( minus_minus @ nat @ ( minus_minus @ nat @ I @ K ) @ J ) ) ).

% diff_commute
thf(fact_180_Nat_Ole__imp__diff__is__add,axiom,
    ! [I: nat,J: nat,K: nat] :
      ( ( ord_less_eq @ nat @ I @ J )
     => ( ( ( minus_minus @ nat @ J @ I )
          = K )
        = ( J
          = ( plus_plus @ nat @ K @ I ) ) ) ) ).

% Nat.le_imp_diff_is_add
thf(fact_181_Nat_Odiff__add__assoc2,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq @ nat @ K @ J )
     => ( ( minus_minus @ nat @ ( plus_plus @ nat @ J @ I ) @ K )
        = ( plus_plus @ nat @ ( minus_minus @ nat @ J @ K ) @ I ) ) ) ).

% Nat.diff_add_assoc2
thf(fact_182_Nat_Odiff__add__assoc,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq @ nat @ K @ J )
     => ( ( minus_minus @ nat @ ( plus_plus @ nat @ I @ J ) @ K )
        = ( plus_plus @ nat @ I @ ( minus_minus @ nat @ J @ K ) ) ) ) ).

% Nat.diff_add_assoc
thf(fact_183_Nat_Ole__diff__conv2,axiom,
    ! [K: nat,J: nat,I: nat] :
      ( ( ord_less_eq @ nat @ K @ J )
     => ( ( ord_less_eq @ nat @ I @ ( minus_minus @ nat @ J @ K ) )
        = ( ord_less_eq @ nat @ ( plus_plus @ nat @ I @ K ) @ J ) ) ) ).

% Nat.le_diff_conv2
thf(fact_184_le__diff__conv,axiom,
    ! [J: nat,K: nat,I: nat] :
      ( ( ord_less_eq @ nat @ ( minus_minus @ nat @ J @ K ) @ I )
      = ( ord_less_eq @ nat @ J @ ( plus_plus @ nat @ I @ K ) ) ) ).

% le_diff_conv
thf(fact_185_Nat_Ole__add__diff,axiom,
    ! [K: nat,N: nat,M: nat] :
      ( ( ord_less_eq @ nat @ K @ N )
     => ( ord_less_eq @ nat @ M @ ( minus_minus @ nat @ ( plus_plus @ nat @ N @ M ) @ K ) ) ) ).

% Nat.le_add_diff
thf(fact_186_full__nat__induct,axiom,
    ! [P2: nat > $o,N: nat] :
      ( ! [N3: nat] :
          ( ! [M3: nat] :
              ( ( ord_less_eq @ nat @ ( suc @ M3 ) @ N3 )
             => ( P2 @ M3 ) )
         => ( P2 @ N3 ) )
     => ( P2 @ N ) ) ).

% full_nat_induct
thf(fact_187_not__less__eq__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ~ ( ord_less_eq @ nat @ M @ N ) )
      = ( ord_less_eq @ nat @ ( suc @ N ) @ M ) ) ).

% not_less_eq_eq
thf(fact_188_Suc__n__not__le__n,axiom,
    ! [N: nat] :
      ~ ( ord_less_eq @ nat @ ( suc @ N ) @ N ) ).

% Suc_n_not_le_n
thf(fact_189_le__Suc__eq,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq @ nat @ M @ ( suc @ N ) )
      = ( ( ord_less_eq @ nat @ M @ N )
        | ( M
          = ( suc @ N ) ) ) ) ).

% le_Suc_eq
thf(fact_190_Suc__le__D,axiom,
    ! [N: nat,M6: nat] :
      ( ( ord_less_eq @ nat @ ( suc @ N ) @ M6 )
     => ? [M2: nat] :
          ( M6
          = ( suc @ M2 ) ) ) ).

% Suc_le_D
thf(fact_191_le__SucI,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq @ nat @ M @ N )
     => ( ord_less_eq @ nat @ M @ ( suc @ N ) ) ) ).

% le_SucI
thf(fact_192_le__SucE,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq @ nat @ M @ ( suc @ N ) )
     => ( ~ ( ord_less_eq @ nat @ M @ N )
       => ( M
          = ( suc @ N ) ) ) ) ).

% le_SucE
thf(fact_193_Suc__leD,axiom,
    ! [M: nat,N: nat] :
      ( ( ord_less_eq @ nat @ ( suc @ M ) @ N )
     => ( ord_less_eq @ nat @ M @ N ) ) ).

% Suc_leD
thf(fact_194_zero__induct__lemma,axiom,
    ! [P2: nat > $o,K: nat,I: nat] :
      ( ( P2 @ K )
     => ( ! [N3: nat] :
            ( ( P2 @ ( suc @ N3 ) )
           => ( P2 @ N3 ) )
       => ( P2 @ ( minus_minus @ nat @ K @ I ) ) ) ) ).

% zero_induct_lemma
thf(fact_195_diff__le__mono2,axiom,
    ! [M: nat,N: nat,L: nat] :
      ( ( ord_less_eq @ nat @ M @ N )
     => ( ord_less_eq @ nat @ ( minus_minus @ nat @ L @ N ) @ ( minus_minus @ nat @ L @ M ) ) ) ).

% diff_le_mono2
thf(fact_196_le__diff__iff_H,axiom,
    ! [A2: nat,C: nat,B: nat] :
      ( ( ord_less_eq @ nat @ A2 @ C )
     => ( ( ord_less_eq @ nat @ B @ C )
       => ( ( ord_less_eq @ nat @ ( minus_minus @ nat @ C @ A2 ) @ ( minus_minus @ nat @ C @ B ) )
          = ( ord_less_eq @ nat @ B @ A2 ) ) ) ) ).

% le_diff_iff'
thf(fact_197_diff__le__self,axiom,
    ! [M: nat,N: nat] : ( ord_less_eq @ nat @ ( minus_minus @ nat @ M @ N ) @ M ) ).

% diff_le_self
thf(fact_198_diff__le__mono,axiom,
    ! [M: nat,N: nat,L: nat] :
      ( ( ord_less_eq @ nat @ M @ N )
     => ( ord_less_eq @ nat @ ( minus_minus @ nat @ M @ L ) @ ( minus_minus @ nat @ N @ L ) ) ) ).

% diff_le_mono
thf(fact_199_Nat_Odiff__diff__eq,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_eq @ nat @ K @ M )
     => ( ( ord_less_eq @ nat @ K @ N )
       => ( ( minus_minus @ nat @ ( minus_minus @ nat @ M @ K ) @ ( minus_minus @ nat @ N @ K ) )
          = ( minus_minus @ nat @ M @ N ) ) ) ) ).

% Nat.diff_diff_eq
thf(fact_200_le__diff__iff,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_eq @ nat @ K @ M )
     => ( ( ord_less_eq @ nat @ K @ N )
       => ( ( ord_less_eq @ nat @ ( minus_minus @ nat @ M @ K ) @ ( minus_minus @ nat @ N @ K ) )
          = ( ord_less_eq @ nat @ M @ N ) ) ) ) ).

% le_diff_iff
thf(fact_201_eq__diff__iff,axiom,
    ! [K: nat,M: nat,N: nat] :
      ( ( ord_less_eq @ nat @ K @ M )
     => ( ( ord_less_eq @ nat @ K @ N )
       => ( ( ( minus_minus @ nat @ M @ K )
            = ( minus_minus @ nat @ N @ K ) )
          = ( M = N ) ) ) ) ).

% eq_diff_iff
thf(fact_202_sdrop__simps_I2_J,axiom,
    ! [A: $tType,N: nat,S: stream @ A] :
      ( ( stl @ A @ ( sdrop @ A @ N @ S ) )
      = ( sdrop @ A @ ( suc @ N ) @ S ) ) ).

% sdrop_simps(2)
thf(fact_203_diff__add__zero,axiom,
    ! [A: $tType] :
      ( ( comm_monoid_diff @ A @ ( type2 @ A ) )
     => ! [A2: A,B: A] :
          ( ( minus_minus @ A @ A2 @ ( plus_plus @ A @ A2 @ B ) )
          = ( zero_zero @ A ) ) ) ).

% diff_add_zero
thf(fact_204_le__add__diff__inverse2,axiom,
    ! [A: $tType] :
      ( ( linordered_semidom @ A @ ( type2 @ A ) )
     => ! [B: A,A2: A] :
          ( ( ord_less_eq @ A @ B @ A2 )
         => ( ( plus_plus @ A @ ( minus_minus @ A @ A2 @ B ) @ B )
            = A2 ) ) ) ).

% le_add_diff_inverse2
thf(fact_205_le__add__diff__inverse,axiom,
    ! [A: $tType] :
      ( ( linordered_semidom @ A @ ( type2 @ A ) )
     => ! [B: A,A2: A] :
          ( ( ord_less_eq @ A @ B @ A2 )
         => ( ( plus_plus @ A @ B @ ( minus_minus @ A @ A2 @ B ) )
            = A2 ) ) ) ).

% le_add_diff_inverse
thf(fact_206_diff__gt__0__iff__gt,axiom,
    ! [A: $tType] :
      ( ( ordered_ab_group_add @ A @ ( type2 @ A ) )
     => ! [A2: A,B: A] :
          ( ( ord_less @ A @ ( zero_zero @ A ) @ ( minus_minus @ A @ A2 @ B ) )
          = ( ord_less @ A @ B @ A2 ) ) ) ).

% diff_gt_0_iff_gt
thf(fact_207_add__less__same__cancel1,axiom,
    ! [A: $tType] :
      ( ( ordere516151231imp_le @ A @ ( type2 @ A ) )
     => ! [B: A,A2: A] :
          ( ( ord_less @ A @ ( plus_plus @ A @ B @ A2 ) @ B )
          = ( ord_less @ A @ A2 @ ( zero_zero @ A ) ) ) ) ).

% add_less_same_cancel1
thf(fact_208_add__less__same__cancel2,axiom,
    ! [A: $tType] :
      ( ( ordere516151231imp_le @ A @ ( type2 @ A ) )
     => ! [A2: A,B: A] :
          ( ( ord_less @ A @ ( plus_plus @ A @ A2 @ B ) @ B )
          = ( ord_less @ A @ A2 @ ( zero_zero @ A ) ) ) ) ).

% add_less_same_cancel2
thf(fact_209_less__add__same__cancel1,axiom,
    ! [A: $tType] :
      ( ( ordere516151231imp_le @ A @ ( type2 @ A ) )
     => ! [A2: A,B: A] :
          ( ( ord_less @ A @ A2 @ ( plus_plus @ A @ A2 @ B ) )
          = ( ord_less @ A @ ( zero_zero @ A ) @ B ) ) ) ).

% less_add_same_cancel1
thf(fact_210_less__add__same__cancel2,axiom,
    ! [A: $tType] :
      ( ( ordere516151231imp_le @ A @ ( type2 @ A ) )
     => ! [A2: A,B: A] :
          ( ( ord_less @ A @ A2 @ ( plus_plus @ A @ B @ A2 ) )
          = ( ord_less @ A @ ( zero_zero @ A ) @ B ) ) ) ).

% less_add_same_cancel2
thf(fact_211_double__add__less__zero__iff__single__add__less__zero,axiom,
    ! [A: $tType] :
      ( ( linord219039673up_add @ A @ ( type2 @ A ) )
     => ! [A2: A] :
          ( ( ord_less @ A @ ( plus_plus @ A @ A2 @ A2 ) @ ( zero_zero @ A ) )
          = ( ord_less @ A @ A2 @ ( zero_zero @ A ) ) ) ) ).

% double_add_less_zero_iff_single_add_less_zero
thf(fact_212_add__right__cancel,axiom,
    ! [A: $tType] :
      ( ( cancel_semigroup_add @ A @ ( type2 @ A ) )
     => ! [B: A,A2: A,C: A] :
          ( ( ( plus_plus @ A @ B @ A2 )
            = ( plus_plus @ A @ C @ A2 ) )
          = ( B = C ) ) ) ).

% add_right_cancel
thf(fact_213_add__left__cancel,axiom,
    ! [A: $tType] :
      ( ( cancel_semigroup_add @ A @ ( type2 @ A ) )
     => ! [A2: A,B: A,C: A] :
          ( ( ( plus_plus @ A @ A2 @ B )
            = ( plus_plus @ A @ A2 @ C ) )
          = ( B = C ) ) ) ).

% add_left_cancel
thf(fact_214_le__zero__eq,axiom,
    ! [A: $tType] :
      ( ( canoni770627133id_add @ A @ ( type2 @ A ) )
     => ! [N: A] :
          ( ( ord_less_eq @ A @ N @ ( zero_zero @ A ) )
          = ( N
            = ( zero_zero @ A ) ) ) ) ).

% le_zero_eq
thf(fact_215_not__gr__zero,axiom,
    ! [A: $tType] :
      ( ( canoni770627133id_add @ A @ ( type2 @ A ) )
     => ! [N: A] :
          ( ( ~ ( ord_less @ A @ ( zero_zero @ A ) @ N ) )
          = ( N
            = ( zero_zero @ A ) ) ) ) ).

% not_gr_zero
thf(fact_216_add__le__cancel__left,axiom,
    ! [A: $tType] :
      ( ( ordere236663937imp_le @ A @ ( type2 @ A ) )
     => ! [C: A,A2: A,B: A] :
          ( ( ord_less_eq @ A @ ( plus_plus @ A @ C @ A2 ) @ ( plus_plus @ A @ C @ B ) )
          = ( ord_less_eq @ A @ A2 @ B ) ) ) ).

% add_le_cancel_left
thf(fact_217_add__le__cancel__right,axiom,
    ! [A: $tType] :
      ( ( ordere236663937imp_le @ A @ ( type2 @ A ) )
     => ! [A2: A,C: A,B: A] :
          ( ( ord_less_eq @ A @ ( plus_plus @ A @ A2 @ C ) @ ( plus_plus @ A @ B @ C ) )
          = ( ord_less_eq @ A @ A2 @ B ) ) ) ).

% add_le_cancel_right
thf(fact_218_add__cancel__right__right,axiom,
    ! [A: $tType] :
      ( ( cancel1352612707id_add @ A @ ( type2 @ A ) )
     => ! [A2: A,B: A] :
          ( ( A2
            = ( plus_plus @ A @ A2 @ B ) )
          = ( B
            = ( zero_zero @ A ) ) ) ) ).

% add_cancel_right_right
thf(fact_219_add__cancel__right__left,axiom,
    ! [A: $tType] :
      ( ( cancel1352612707id_add @ A @ ( type2 @ A ) )
     => ! [A2: A,B: A] :
          ( ( A2
            = ( plus_plus @ A @ B @ A2 ) )
          = ( B
            = ( zero_zero @ A ) ) ) ) ).

% add_cancel_right_left
thf(fact_220_add__cancel__left__right,axiom,
    ! [A: $tType] :
      ( ( cancel1352612707id_add @ A @ ( type2 @ A ) )
     => ! [A2: A,B: A] :
          ( ( ( plus_plus @ A @ A2 @ B )
            = A2 )
          = ( B
            = ( zero_zero @ A ) ) ) ) ).

% add_cancel_left_right
thf(fact_221_add__cancel__left__left,axiom,
    ! [A: $tType] :
      ( ( cancel1352612707id_add @ A @ ( type2 @ A ) )
     => ! [B: A,A2: A] :
          ( ( ( plus_plus @ A @ B @ A2 )
            = A2 )
          = ( B
            = ( zero_zero @ A ) ) ) ) ).

% add_cancel_left_left
thf(fact_222_double__zero__sym,axiom,
    ! [A: $tType] :
      ( ( linord219039673up_add @ A @ ( type2 @ A ) )
     => ! [A2: A] :
          ( ( ( zero_zero @ A )
            = ( plus_plus @ A @ A2 @ A2 ) )
          = ( A2
            = ( zero_zero @ A ) ) ) ) ).

% double_zero_sym
thf(fact_223_double__zero,axiom,
    ! [A: $tType] :
      ( ( linord219039673up_add @ A @ ( type2 @ A ) )
     => ! [A2: A] :
          ( ( ( plus_plus @ A @ A2 @ A2 )
            = ( zero_zero @ A ) )
          = ( A2
            = ( zero_zero @ A ) ) ) ) ).

% double_zero
thf(fact_224_add_Oright__neutral,axiom,
    ! [A: $tType] :
      ( ( monoid_add @ A @ ( type2 @ A ) )
     => ! [A2: A] :
          ( ( plus_plus @ A @ A2 @ ( zero_zero @ A ) )
          = A2 ) ) ).

% add.right_neutral
thf(fact_225_add_Oleft__neutral,axiom,
    ! [A: $tType] :
      ( ( monoid_add @ A @ ( type2 @ A ) )
     => ! [A2: A] :
          ( ( plus_plus @ A @ ( zero_zero @ A ) @ A2 )
          = A2 ) ) ).

% add.left_neutral
thf(fact_226_diff__self,axiom,
    ! [A: $tType] :
      ( ( group_add @ A @ ( type2 @ A ) )
     => ! [A2: A] :
          ( ( minus_minus @ A @ A2 @ A2 )
          = ( zero_zero @ A ) ) ) ).

% diff_self
thf(fact_227_diff__0__right,axiom,
    ! [A: $tType] :
      ( ( group_add @ A @ ( type2 @ A ) )
     => ! [A2: A] :
          ( ( minus_minus @ A @ A2 @ ( zero_zero @ A ) )
          = A2 ) ) ).

% diff_0_right
thf(fact_228_zero__diff,axiom,
    ! [A: $tType] :
      ( ( comm_monoid_diff @ A @ ( type2 @ A ) )
     => ! [A2: A] :
          ( ( minus_minus @ A @ ( zero_zero @ A ) @ A2 )
          = ( zero_zero @ A ) ) ) ).

% zero_diff
thf(fact_229_diff__zero,axiom,
    ! [A: $tType] :
      ( ( cancel1352612707id_add @ A @ ( type2 @ A ) )
     => ! [A2: A] :
          ( ( minus_minus @ A @ A2 @ ( zero_zero @ A ) )
          = A2 ) ) ).

% diff_zero
thf(fact_230_cancel__comm__monoid__add__class_Odiff__cancel,axiom,
    ! [A: $tType] :
      ( ( cancel1352612707id_add @ A @ ( type2 @ A ) )
     => ! [A2: A] :
          ( ( minus_minus @ A @ A2 @ A2 )
          = ( zero_zero @ A ) ) ) ).

% cancel_comm_monoid_add_class.diff_cancel
thf(fact_231_add__less__cancel__right,axiom,
    ! [A: $tType] :
      ( ( ordere236663937imp_le @ A @ ( type2 @ A ) )
     => ! [A2: A,C: A,B: A] :
          ( ( ord_less @ A @ ( plus_plus @ A @ A2 @ C ) @ ( plus_plus @ A @ B @ C ) )
          = ( ord_less @ A @ A2 @ B ) ) ) ).

% add_less_cancel_right
thf(fact_232_add__less__cancel__left,axiom,
    ! [A: $tType] :
      ( ( ordere236663937imp_le @ A @ ( type2 @ A ) )
     => ! [C: A,A2: A,B: A] :
          ( ( ord_less @ A @ ( plus_plus @ A @ C @ A2 ) @ ( plus_plus @ A @ C @ B ) )
          = ( ord_less @ A @ A2 @ B ) ) ) ).

% add_less_cancel_left
thf(fact_233_add__diff__cancel,axiom,
    ! [A: $tType] :
      ( ( group_add @ A @ ( type2 @ A ) )
     => ! [A2: A,B: A] :
          ( ( minus_minus @ A @ ( plus_plus @ A @ A2 @ B ) @ B )
          = A2 ) ) ).

% add_diff_cancel
thf(fact_234_diff__add__cancel,axiom,
    ! [A: $tType] :
      ( ( group_add @ A @ ( type2 @ A ) )
     => ! [A2: A,B: A] :
          ( ( plus_plus @ A @ ( minus_minus @ A @ A2 @ B ) @ B )
          = A2 ) ) ).

% diff_add_cancel
thf(fact_235_add__diff__cancel__left,axiom,
    ! [A: $tType] :
      ( ( cancel146912293up_add @ A @ ( type2 @ A ) )
     => ! [C: A,A2: A,B: A] :
          ( ( minus_minus @ A @ ( plus_plus @ A @ C @ A2 ) @ ( plus_plus @ A @ C @ B ) )
          = ( minus_minus @ A @ A2 @ B ) ) ) ).

% add_diff_cancel_left
thf(fact_236_add__diff__cancel__left_H,axiom,
    ! [A: $tType] :
      ( ( cancel146912293up_add @ A @ ( type2 @ A ) )
     => ! [A2: A,B: A] :
          ( ( minus_minus @ A @ ( plus_plus @ A @ A2 @ B ) @ A2 )
          = B ) ) ).

% add_diff_cancel_left'
thf(fact_237_add__diff__cancel__right,axiom,
    ! [A: $tType] :
      ( ( cancel146912293up_add @ A @ ( type2 @ A ) )
     => ! [A2: A,C: A,B: A] :
          ( ( minus_minus @ A @ ( plus_plus @ A @ A2 @ C ) @ ( plus_plus @ A @ B @ C ) )
          = ( minus_minus @ A @ A2 @ B ) ) ) ).

% add_diff_cancel_right
thf(fact_238_add__diff__cancel__right_H,axiom,
    ! [A: $tType] :
      ( ( cancel146912293up_add @ A @ ( type2 @ A ) )
     => ! [A2: A,B: A] :
          ( ( minus_minus @ A @ ( plus_plus @ A @ A2 @ B ) @ B )
          = A2 ) ) ).

% add_diff_cancel_right'
thf(fact_239_sdrop__add,axiom,
    ! [A: $tType,N: nat,M: nat,S: stream @ A] :
      ( ( sdrop @ A @ N @ ( sdrop @ A @ M @ S ) )
      = ( sdrop @ A @ ( plus_plus @ nat @ M @ N ) @ S ) ) ).

% sdrop_add
thf(fact_240_add__le__same__cancel1,axiom,
    ! [A: $tType] :
      ( ( ordere516151231imp_le @ A @ ( type2 @ A ) )
     => ! [B: A,A2: A] :
          ( ( ord_less_eq @ A @ ( plus_plus @ A @ B @ A2 ) @ B )
          = ( ord_less_eq @ A @ A2 @ ( zero_zero @ A ) ) ) ) ).

% add_le_same_cancel1
thf(fact_241_add__le__same__cancel2,axiom,
    ! [A: $tType] :
      ( ( ordere516151231imp_le @ A @ ( type2 @ A ) )
     => ! [A2: A,B: A] :
          ( ( ord_less_eq @ A @ ( plus_plus @ A @ A2 @ B ) @ B )
          = ( ord_less_eq @ A @ A2 @ ( zero_zero @ A ) ) ) ) ).

% add_le_same_cancel2
thf(fact_242_le__add__same__cancel1,axiom,
    ! [A: $tType] :
      ( ( ordere516151231imp_le @ A @ ( type2 @ A ) )
     => ! [A2: A,B: A] :
          ( ( ord_less_eq @ A @ A2 @ ( plus_plus @ A @ A2 @ B ) )
          = ( ord_less_eq @ A @ ( zero_zero @ A ) @ B ) ) ) ).

% le_add_same_cancel1
thf(fact_243_le__add__same__cancel2,axiom,
    ! [A: $tType] :
      ( ( ordere516151231imp_le @ A @ ( type2 @ A ) )
     => ! [A2: A,B: A] :
          ( ( ord_less_eq @ A @ A2 @ ( plus_plus @ A @ B @ A2 ) )
          = ( ord_less_eq @ A @ ( zero_zero @ A ) @ B ) ) ) ).

% le_add_same_cancel2
thf(fact_244_double__add__le__zero__iff__single__add__le__zero,axiom,
    ! [A: $tType] :
      ( ( linord219039673up_add @ A @ ( type2 @ A ) )
     => ! [A2: A] :
          ( ( ord_less_eq @ A @ ( plus_plus @ A @ A2 @ A2 ) @ ( zero_zero @ A ) )
          = ( ord_less_eq @ A @ A2 @ ( zero_zero @ A ) ) ) ) ).

% double_add_le_zero_iff_single_add_le_zero
thf(fact_245_zero__le__double__add__iff__zero__le__single__add,axiom,
    ! [A: $tType] :
      ( ( linord219039673up_add @ A @ ( type2 @ A ) )
     => ! [A2: A] :
          ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( plus_plus @ A @ A2 @ A2 ) )
          = ( ord_less_eq @ A @ ( zero_zero @ A ) @ A2 ) ) ) ).

% zero_le_double_add_iff_zero_le_single_add
thf(fact_246_diff__ge__0__iff__ge,axiom,
    ! [A: $tType] :
      ( ( ordered_ab_group_add @ A @ ( type2 @ A ) )
     => ! [A2: A,B: A] :
          ( ( ord_less_eq @ A @ ( zero_zero @ A ) @ ( minus_minus @ A @ A2 @ B ) )
          = ( ord_less_eq @ A @ B @ A2 ) ) ) ).

% diff_ge_0_iff_ge
thf(fact_247_zero__less__double__add__iff__zero__less__single__add,axiom,
    ! [A: $tType] :
      ( ( linord219039673up_add @ A @ ( type2 @ A ) )
     => ! [A2: A] :
          ( ( ord_less @ A @ ( zero_zero @ A ) @ ( plus_plus @ A @ A2 @ A2 ) )
          = ( ord_less @ A @ ( zero_zero @ A ) @ A2 ) ) ) ).

% zero_less_double_add_iff_zero_less_single_add
thf(fact_248_zero__reorient,axiom,
    ! [A: $tType] :
      ( ( zero @ A @ ( type2 @ A ) )
     => ! [X5: A] :
          ( ( ( zero_zero @ A )
            = X5 )
          = ( X5
            = ( zero_zero @ A ) ) ) ) ).

% zero_reorient
thf(fact_249_linorder__neqE__linordered__idom,axiom,
    ! [A: $tType] :
      ( ( linordered_idom @ A @ ( type2 @ A ) )
     => ! [X5: A,Y3: A] :
          ( ( X5 != Y3 )
         => ( ~ ( ord_less @ A @ X5 @ Y3 )
           => ( ord_less @ A @ Y3 @ X5 ) ) ) ) ).

% linorder_neqE_linordered_idom
thf(fact_250_add__right__imp__eq,axiom,
    ! [A: $tType] :
      ( ( cancel_semigroup_add @ A @ ( type2 @ A ) )
     => ! [B: A,A2: A,C: A] :
          ( ( ( plus_plus @ A @ B @ A2 )
            = ( plus_plus @ A @ C @ A2 ) )
         => ( B = C ) ) ) ).

% add_right_imp_eq
thf(fact_251_add__left__imp__eq,axiom,
    ! [A: $tType] :
      ( ( cancel_semigroup_add @ A @ ( type2 @ A ) )
     => ! [A2: A,B: A,C: A] :
          ( ( ( plus_plus @ A @ A2 @ B )
            = ( plus_plus @ A @ A2 @ C ) )
         => ( B = C ) ) ) ).

% add_left_imp_eq
thf(fact_252_add_Oleft__commute,axiom,
    ! [A: $tType] :
      ( ( ab_semigroup_add @ A @ ( type2 @ A ) )
     => ! [B: A,A2: A,C: A] :
          ( ( plus_plus @ A @ B @ ( plus_plus @ A @ A2 @ C ) )
          = ( plus_plus @ A @ A2 @ ( plus_plus @ A @ B @ C ) ) ) ) ).

% add.left_commute

%----Type constructors (15)
thf(tcon_Nat_Onat___Groups_Oordered__ab__semigroup__monoid__add__imp__le,axiom,
    ordere516151231imp_le @ nat @ ( type2 @ nat ) ).

thf(tcon_Nat_Onat___Groups_Oordered__ab__semigroup__add__imp__le,axiom,
    ordere236663937imp_le @ nat @ ( type2 @ nat ) ).

thf(tcon_Nat_Onat___Groups_Ocanonically__ordered__monoid__add,axiom,
    canoni770627133id_add @ nat @ ( type2 @ nat ) ).

thf(tcon_Nat_Onat___Groups_Ocancel__ab__semigroup__add,axiom,
    cancel146912293up_add @ nat @ ( type2 @ nat ) ).

thf(tcon_Nat_Onat___Groups_Ocancel__comm__monoid__add,axiom,
    cancel1352612707id_add @ nat @ ( type2 @ nat ) ).

thf(tcon_Nat_Onat___Groups_Ocancel__semigroup__add,axiom,
    cancel_semigroup_add @ nat @ ( type2 @ nat ) ).

thf(tcon_Nat_Onat___Rings_Olinordered__semidom,axiom,
    linordered_semidom @ nat @ ( type2 @ nat ) ).

thf(tcon_Nat_Onat___Groups_Ocomm__monoid__diff,axiom,
    comm_monoid_diff @ nat @ ( type2 @ nat ) ).

thf(tcon_Nat_Onat___Groups_Oab__semigroup__add,axiom,
    ab_semigroup_add @ nat @ ( type2 @ nat ) ).

thf(tcon_Nat_Onat___Groups_Omonoid__add,axiom,
    monoid_add @ nat @ ( type2 @ nat ) ).

thf(tcon_Nat_Onat___Orderings_Oorder,axiom,
    order @ nat @ ( type2 @ nat ) ).

thf(tcon_Nat_Onat___Groups_Ozero,axiom,
    zero @ nat @ ( type2 @ nat ) ).

thf(tcon_Set_Oset___Orderings_Oorder_1,axiom,
    ! [A4: $tType] : ( order @ ( set @ A4 ) @ ( type2 @ ( set @ A4 ) ) ) ).

thf(tcon_HOL_Obool___Orderings_Oorder_2,axiom,
    order @ $o @ ( type2 @ $o ) ).

thf(tcon_FSet_Ofset___Orderings_Oorder_3,axiom,
    ! [A4: $tType] : ( order @ ( fset @ A4 ) @ ( type2 @ ( fset @ A4 ) ) ) ).

%----Conjectures (1)
thf(conj_0,conjecture,
    ord_less_eq @ nat @ ( abstra2097340358le_pos @ rule @ ( stl @ rule @ ( abstra1259602206m_trim @ rule @ state @ eff @ rs @ s2 ) ) @ r ) @ ( minus_minus @ nat @ ( abstra2097340358le_pos @ rule @ rs @ r ) @ ( suc @ ( abstra1332369113inWait @ rule @ state @ eff @ rs @ s2 ) ) ) ).

%------------------------------------------------------------------------------