TPTP Problem File: COM012+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : COM012+1 : TPTP v9.0.0. Released v4.0.0.
% Domain : Computing Theory
% Problem : Newman's lemma on rewriting systems 01, 00 expansion
% Version : Especial.
% English :
% Refs : [VLP07] Verchinine et al. (2007), System for Automated Deduction
% : [PV+07] Paskevich et al. (2007), Reasoning Inside a Formula an
% : [Pas08] Paskevich (2008), Email to G. Sutcliffe
% Source : [Pas08]
% Names : newman_01.00 [Pas08]
% Status : Theorem
% Rating : 0.12 v9.0.0, 0.11 v8.2.0, 0.14 v8.1.0, 0.06 v7.5.0, 0.09 v7.4.0, 0.13 v7.3.0, 0.10 v7.2.0, 0.07 v7.1.0, 0.04 v7.0.0, 0.07 v6.4.0, 0.08 v6.3.0, 0.00 v6.2.0, 0.12 v6.1.0, 0.13 v6.0.0, 0.04 v5.5.0, 0.07 v5.4.0, 0.11 v5.3.0, 0.15 v5.2.0, 0.00 v5.1.0, 0.05 v5.0.0, 0.12 v4.1.0, 0.17 v4.0.1, 0.39 v4.0.0
% Syntax : Number of formulae : 10 ( 0 unt; 2 def)
% Number of atoms : 45 ( 1 equ)
% Maximal formula atoms : 8 ( 4 avg)
% Number of connectives : 35 ( 0 ~; 2 |; 18 &)
% ( 2 <=>; 13 =>; 0 <=; 0 <~>)
% Maximal formula depth : 10 ( 6 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 8 ( 6 usr; 1 prp; 0-3 aty)
% Number of functors : 4 ( 4 usr; 4 con; 0-0 aty)
% Number of variables : 21 ( 20 !; 1 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Problem generated by the SAD system [VLP07]
%------------------------------------------------------------------------------
fof(mElmSort,axiom,
! [W0] :
( aElement0(W0)
=> $true ) ).
fof(mRelSort,axiom,
! [W0] :
( aRewritingSystem0(W0)
=> $true ) ).
fof(mReduct,axiom,
! [W0,W1] :
( ( aElement0(W0)
& aRewritingSystem0(W1) )
=> ! [W2] :
( aReductOfIn0(W2,W0,W1)
=> aElement0(W2) ) ) ).
fof(mWFOrd,axiom,
! [W0,W1] :
( ( aElement0(W0)
& aElement0(W1) )
=> ( iLess0(W0,W1)
=> $true ) ) ).
fof(mTCbr,axiom,
! [W0,W1,W2] :
( ( aElement0(W0)
& aRewritingSystem0(W1)
& aElement0(W2) )
=> ( sdtmndtplgtdt0(W0,W1,W2)
=> $true ) ) ).
fof(mTCDef,definition,
! [W0,W1,W2] :
( ( aElement0(W0)
& aRewritingSystem0(W1)
& aElement0(W2) )
=> ( sdtmndtplgtdt0(W0,W1,W2)
<=> ( aReductOfIn0(W2,W0,W1)
| ? [W3] :
( aElement0(W3)
& aReductOfIn0(W3,W0,W1)
& sdtmndtplgtdt0(W3,W1,W2) ) ) ) ) ).
fof(mTCTrans,axiom,
! [W0,W1,W2,W3] :
( ( aElement0(W0)
& aRewritingSystem0(W1)
& aElement0(W2)
& aElement0(W3) )
=> ( ( sdtmndtplgtdt0(W0,W1,W2)
& sdtmndtplgtdt0(W2,W1,W3) )
=> sdtmndtplgtdt0(W0,W1,W3) ) ) ).
fof(mTCRDef,definition,
! [W0,W1,W2] :
( ( aElement0(W0)
& aRewritingSystem0(W1)
& aElement0(W2) )
=> ( sdtmndtasgtdt0(W0,W1,W2)
<=> ( W0 = W2
| sdtmndtplgtdt0(W0,W1,W2) ) ) ) ).
fof(m__349,hypothesis,
( aElement0(xx)
& aRewritingSystem0(xR)
& aElement0(xy)
& aElement0(xz) ) ).
fof(m__,conjecture,
( ( sdtmndtasgtdt0(xx,xR,xy)
& sdtmndtasgtdt0(xy,xR,xz) )
=> sdtmndtasgtdt0(xx,xR,xz) ) ).
%------------------------------------------------------------------------------