TPTP Problem File: COM011-2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : COM011-2 : TPTP v9.0.0. Released v3.2.0.
% Domain : Computing Theory
% Problem : Problem about UNITY theory
% Version : [Pau06] axioms : Reduced > Especial.
% English :
% Refs : [Pau06] Paulson (2006), Email to G. Sutcliffe
% Source : [Pau06]
% Names :
% Status : Unsatisfiable
% Rating : 0.09 v9.0.0, 0.08 v8.2.0, 0.14 v8.1.0, 0.00 v5.0.0, 0.07 v4.1.0, 0.00 v4.0.0, 0.14 v3.4.0, 0.00 v3.2.0
% Syntax : Number of clauses : 10 ( 3 unt; 1 nHn; 9 RR)
% Number of literals : 20 ( 0 equ; 10 neg)
% Maximal clause size : 3 ( 2 avg)
% Maximal term depth : 4 ( 1 avg)
% Number of predicates : 2 ( 2 usr; 0 prp; 3-3 aty)
% Number of functors : 13 ( 13 usr; 4 con; 0-3 aty)
% Number of variables : 27 ( 1 sgn)
% SPC : CNF_UNS_RFO_NEQ_NHN
% Comments : The problems in the [Pau06] collection each have very many axioms,
% of which only a small selection are required for the refutation.
% The mission is to find those few axioms, after which a refutation
% can be quite easily found. This version has only the necessary
% axioms.
%------------------------------------------------------------------------------
cnf(cls_conjecture_0,negated_conjecture,
c_in(v_F,c_UNITY_Oconstrains(v_A,c_union(v_A,v_B,t_a),t_a),tc_UNITY_Oprogram(t_a)) ).
cnf(cls_conjecture_1,negated_conjecture,
c_in(v_F,c_WFair_Otransient(v_A,t_a),tc_UNITY_Oprogram(t_a)) ).
cnf(cls_conjecture_2,negated_conjecture,
~ c_in(v_F,c_WFair_OleadsTo(v_A,v_B,t_a),tc_UNITY_Oprogram(t_a)) ).
cnf(cls_Set_ODiffE_1,axiom,
( ~ c_in(V_c,c_minus(V_A,V_B,tc_set(T_a)),T_a)
| c_in(V_c,V_A,T_a) ) ).
cnf(cls_Set_OsubsetI_0,axiom,
( c_in(c_Main_OsubsetI__1(V_A,V_B,T_a),V_A,T_a)
| c_lessequals(V_A,V_B,tc_set(T_a)) ) ).
cnf(cls_Set_OsubsetI_1,axiom,
( ~ c_in(c_Main_OsubsetI__1(V_A,V_B,T_a),V_B,T_a)
| c_lessequals(V_A,V_B,tc_set(T_a)) ) ).
cnf(cls_UNITY_Oconstrains__weaken__L_0,axiom,
( ~ c_in(V_F,c_UNITY_Oconstrains(V_A,V_A_H,T_a),tc_UNITY_Oprogram(T_a))
| ~ c_lessequals(V_B,V_A,tc_set(T_a))
| c_in(V_F,c_UNITY_Oconstrains(V_B,V_A_H,T_a),tc_UNITY_Oprogram(T_a)) ) ).
cnf(cls_WFair_OensuresI_0,axiom,
( ~ c_in(V_F,c_UNITY_Oconstrains(c_minus(V_A,V_B,tc_set(T_a)),c_union(V_A,V_B,T_a),T_a),tc_UNITY_Oprogram(T_a))
| ~ c_in(V_F,c_WFair_Otransient(c_minus(V_A,V_B,tc_set(T_a)),T_a),tc_UNITY_Oprogram(T_a))
| c_in(V_F,c_WFair_Oensures(V_A,V_B,T_a),tc_UNITY_Oprogram(T_a)) ) ).
cnf(cls_WFair_OleadsTo__Basis_0,axiom,
( ~ c_in(V_F,c_WFair_Oensures(V_A,V_B,T_a),tc_UNITY_Oprogram(T_a))
| c_in(V_F,c_WFair_OleadsTo(V_A,V_B,T_a),tc_UNITY_Oprogram(T_a)) ) ).
cnf(cls_WFair_Otransient__strengthen_0,axiom,
( ~ c_in(V_F,c_WFair_Otransient(V_A,T_a),tc_UNITY_Oprogram(T_a))
| ~ c_lessequals(V_B,V_A,tc_set(T_a))
| c_in(V_F,c_WFair_Otransient(V_B,T_a),tc_UNITY_Oprogram(T_a)) ) ).
%------------------------------------------------------------------------------