TPTP Problem File: COM009-2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : COM009-2 : TPTP v9.0.0. Released v3.2.0.
% Domain : Computing Theory
% Problem : Problem about UNITY theory
% Version : [Pau06] axioms : Reduced > Especial.
% English :
% Refs : [Pau06] Paulson (2006), Email to G. Sutcliffe
% Source : [Pau06]
% Names :
% Status : Unsatisfiable
% Rating : 0.05 v9.0.0, 0.10 v8.1.0, 0.00 v7.5.0, 0.05 v7.4.0, 0.06 v7.3.0, 0.08 v7.1.0, 0.00 v7.0.0, 0.07 v6.4.0, 0.00 v6.1.0, 0.07 v6.0.0, 0.00 v5.5.0, 0.05 v5.4.0, 0.10 v5.3.0, 0.06 v5.2.0, 0.00 v5.1.0, 0.06 v5.0.0, 0.07 v4.1.0, 0.08 v4.0.1, 0.09 v3.7.0, 0.00 v3.4.0, 0.08 v3.3.0, 0.14 v3.2.0
% Syntax : Number of clauses : 4 ( 1 unt; 1 nHn; 3 RR)
% Number of literals : 7 ( 3 equ; 3 neg)
% Maximal clause size : 2 ( 1 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 2 ( 1 usr; 0 prp; 2-2 aty)
% Number of functors : 3 ( 3 usr; 2 con; 0-2 aty)
% Number of variables : 4 ( 1 sgn)
% SPC : CNF_UNS_RFO_SEQ_NHN
% Comments : The problems in the [Pau06] collection each have very many axioms,
% of which only a small selection are required for the refutation.
% The mission is to find those few axioms, after which a refutation
% can be quite easily found. This version has only the necessary
% axioms.
%------------------------------------------------------------------------------
cnf(cls_conjecture_0,negated_conjecture,
( c_UNITY_Ototalize(v_F,t_a) != v_F
| ~ c_UNITY_Oall__total(v_F,t_a) ) ).
cnf(cls_conjecture_1,negated_conjecture,
( c_UNITY_Oall__total(v_F,t_a)
| c_UNITY_Ototalize(v_F,t_a) = v_F ) ).
cnf(cls_UNITY_Oall__total__imp__totalize_0,axiom,
( ~ c_UNITY_Oall__total(V_F,T_a)
| c_UNITY_Ototalize(V_F,T_a) = V_F ) ).
cnf(cls_UNITY_Oall__total__totalize_0,axiom,
c_UNITY_Oall__total(c_UNITY_Ototalize(V_F,T_a),T_a) ).
%------------------------------------------------------------------------------