TPTP Problem File: COM009-1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : COM009-1 : TPTP v9.0.0. Released v3.2.0.
% Domain : Computing Theory
% Problem : Problem about UNITY theory
% Version : [Pau06] axioms : Especial.
% English :
% Refs : [Pau06] Paulson (2006), Email to G. Sutcliffe
% Source : [Pau06]
% Names : UNITY__all_total_iff_totalize [Pau06]
% Status : Unsatisfiable
% Rating : 0.15 v9.0.0, 0.20 v8.2.0, 0.14 v8.1.0, 0.11 v7.5.0, 0.16 v7.4.0, 0.18 v7.3.0, 0.08 v7.1.0, 0.00 v7.0.0, 0.13 v6.4.0, 0.07 v6.3.0, 0.00 v6.2.0, 0.30 v6.1.0, 0.21 v6.0.0, 0.30 v5.5.0, 0.45 v5.4.0, 0.40 v5.3.0, 0.44 v5.2.0, 0.38 v5.1.0, 0.47 v5.0.0, 0.36 v4.1.0, 0.38 v4.0.1, 0.27 v3.7.0, 0.10 v3.5.0, 0.18 v3.4.0, 0.25 v3.3.0, 0.43 v3.2.0
% Syntax : Number of clauses : 1371 ( 225 unt; 29 nHn;1276 RR)
% Number of literals : 2579 ( 200 equ;1220 neg)
% Maximal clause size : 4 ( 1 avg)
% Maximal term depth : 4 ( 1 avg)
% Number of predicates : 83 ( 82 usr; 0 prp; 1-3 aty)
% Number of functors : 127 ( 127 usr; 19 con; 0-6 aty)
% Number of variables : 1936 ( 221 sgn)
% SPC : CNF_UNS_RFO_SEQ_NHN
% Comments : The problems in the [Pau06] collection each have very many axioms,
% of which only a small selection are required for the refutation.
% The mission is to find those few axioms, after which a refutation
% can be quite easily found.
%------------------------------------------------------------------------------
include('Axioms/MSC001-2.ax').
include('Axioms/MSC001-0.ax').
%------------------------------------------------------------------------------
cnf(cls_UNITY_OId__in__Acts_0,axiom,
c_in(c_Relation_OId,c_UNITY_OActs(V_F,T_a),tc_set(tc_prod(T_a,T_a))) ).
cnf(cls_UNITY_OId__in__AllowedActs_0,axiom,
c_in(c_Relation_OId,c_UNITY_OAllowedActs(V_F,T_a),tc_set(tc_prod(T_a,T_a))) ).
cnf(cls_UNITY_Oall__total__imp__totalize_0,axiom,
( ~ c_UNITY_Oall__total(V_F,T_a)
| c_UNITY_Ototalize(V_F,T_a) = V_F ) ).
cnf(cls_UNITY_Oall__total__totalize_0,axiom,
c_UNITY_Oall__total(c_UNITY_Ototalize(V_F,T_a),T_a) ).
cnf(cls_UNITY_Oconstrains__UNIV2_0,axiom,
c_in(V_F,c_UNITY_Oconstrains(V_A,c_UNIV,T_a),tc_UNITY_Oprogram(T_a)) ).
cnf(cls_UNITY_Oconstrains__UNIV__iff1_0,axiom,
( ~ c_in(V_F,c_UNITY_Oconstrains(c_UNIV,V_B,T_a),tc_UNITY_Oprogram(T_a))
| V_B = c_UNIV ) ).
cnf(cls_UNITY_Oconstrains__UNIV__iff2_0,axiom,
c_in(V_F,c_UNITY_Oconstrains(c_UNIV,c_UNIV,T_a),tc_UNITY_Oprogram(T_a)) ).
cnf(cls_UNITY_Oconstrains__empty2__iff1_0,axiom,
( ~ c_in(V_F,c_UNITY_Oconstrains(V_A,c_emptyset,T_a),tc_UNITY_Oprogram(T_a))
| V_A = c_emptyset ) ).
cnf(cls_UNITY_Oconstrains__empty2__iff2_0,axiom,
c_in(V_F,c_UNITY_Oconstrains(c_emptyset,c_emptyset,T_a),tc_UNITY_Oprogram(T_a)) ).
cnf(cls_UNITY_Oconstrains__empty_0,axiom,
c_in(V_F,c_UNITY_Oconstrains(c_emptyset,V_B,T_a),tc_UNITY_Oprogram(T_a)) ).
cnf(cls_UNITY_Oinsert__Id__Acts_0,axiom,
c_insert(c_Relation_OId,c_UNITY_OActs(V_F,T_a),tc_set(tc_prod(T_a,T_a))) = c_UNITY_OActs(V_F,T_a) ).
cnf(cls_UNITY_Oinsert__Id__AllowedActs_0,axiom,
c_insert(c_Relation_OId,c_UNITY_OAllowedActs(V_F,T_a),tc_set(tc_prod(T_a,T_a))) = c_UNITY_OAllowedActs(V_F,T_a) ).
cnf(cls_conjecture_0,negated_conjecture,
( c_UNITY_Ototalize(v_F,t_a) != v_F
| ~ c_UNITY_Oall__total(v_F,t_a) ) ).
cnf(cls_conjecture_1,negated_conjecture,
( c_UNITY_Oall__total(v_F,t_a)
| c_UNITY_Ototalize(v_F,t_a) = v_F ) ).
%------------------------------------------------------------------------------