TPTP Problem File: COM004-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : COM004-1 : TPTP v9.0.0. Released v1.1.0.
% Domain : Computing Theory
% Problem : Part of completeness of resolution
% Version : Especial.
% English : Part of [Bun83]'s proof of the completeness of resolution uses
% the notion of failure nodes. This proves a special case when a
% parent is the empty failure node.
% Refs : [Bun83] Bundy (1983), The Computer Modelling of Mathematical R
% Source : [TPTP]
% Names :
% Status : Unsatisfiable
% Rating : 0.00 v5.3.0, 0.08 v5.2.0, 0.00 v3.3.0, 0.14 v3.1.0, 0.00 v2.0.0
% Syntax : Number of clauses : 9 ( 8 unt; 0 nHn; 6 RR)
% Number of literals : 13 ( 2 equ; 5 neg)
% Maximal clause size : 5 ( 1 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 4 ( 3 usr; 0 prp; 2-2 aty)
% Number of functors : 10 ( 10 usr; 5 con; 0-2 aty)
% Number of variables : 10 ( 1 sgn)
% SPC : CNF_UNS_RFO_SEQ_HRN
% Comments :
%--------------------------------------------------------------------------
cnf(make_node,axiom,
( failure_node(parent_of(X,Y),or(C,D))
| ~ failure_node(X,or(C,P))
| ~ failure_node(Y,or(D,Q))
| ~ contradictory(P,Q)
| ~ siblings(X,Y) ) ).
cnf(not_x_contradicts_x,axiom,
contradictory(negate(X),X) ).
cnf(x_contradicts_not_x,axiom,
contradictory(X,negate(X)) ).
cnf(n_left_and_n_right_are_siblings,axiom,
siblings(left_child_of(X),right_child_of(X)) ).
%----Stuff for the theorem
cnf(n_left_is_atom,hypothesis,
failure_node(n_left,or(empty,atom)) ).
cnf(n_right_is_not_atom,hypothesis,
failure_node(n_right,or(empty,negate(atom))) ).
cnf(n_left_equals_left_child_of_n,hypothesis,
n_left = left_child_of(n) ).
cnf(n_right_equals_right_child_of_n,hypothesis,
n_right = right_child_of(n) ).
%----The goal to be proved.
cnf(goal_is_there_an_empty_node,negated_conjecture,
~ failure_node(Z,or(empty,empty)) ).
%--------------------------------------------------------------------------