TPTP Problem File: COM003+1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : COM003+1 : TPTP v9.0.0. Released v2.0.0.
% Domain : Computing Theory
% Problem : The halting problem is undecidable
% Version : [Bur87b] axioms.
% English :
% Refs : [Bur87a] Burkholder (1987), The Halting Problem
% : [Bur87b] Burkholder (1987), A 76th Automated Theorem Proving Pr
% Source : [Bur87b]
% Names : - [Bur87b]
% Status : Theorem
% Rating : 0.07 v9.0.0, 0.00 v8.1.0, 0.07 v7.5.0, 0.10 v7.4.0, 0.00 v7.0.0, 0.07 v6.4.0, 0.00 v6.3.0, 0.08 v6.2.0, 0.09 v6.1.0, 0.24 v6.0.0, 0.50 v5.5.0, 0.33 v5.4.0, 0.43 v5.3.0, 0.48 v5.2.0, 0.29 v5.0.0, 0.30 v4.1.0, 0.28 v4.0.1, 0.37 v4.0.0, 0.35 v3.7.0, 0.33 v3.5.0, 0.25 v3.4.0, 0.17 v3.3.0, 0.22 v3.2.0, 0.33 v3.1.0, 0.50 v2.7.0, 0.33 v2.6.0, 0.00 v2.5.0, 0.33 v2.4.0, 0.33 v2.2.1, 0.50 v2.2.0, 0.00 v2.1.0
% Syntax : Number of formulae : 5 ( 0 unt; 0 def)
% Number of atoms : 55 ( 0 equ)
% Maximal formula atoms : 18 ( 11 avg)
% Number of connectives : 57 ( 7 ~; 0 |; 32 &)
% ( 0 <=>; 18 =>; 0 <=; 0 <~>)
% Maximal formula depth : 9 ( 8 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 6 ( 6 usr; 0 prp; 1-3 aty)
% Number of functors : 2 ( 2 usr; 2 con; 0-0 aty)
% Number of variables : 22 ( 15 !; 7 ?)
% SPC : FOF_THM_RFO_NEQ
% Comments :
%--------------------------------------------------------------------------
fof(p1,axiom,
( ? [X] :
( algorithm(X)
& ! [Y] :
( program(Y)
=> ! [Z] : decides(X,Y,Z) ) )
=> ? [W] :
( program(W)
& ! [Y] :
( program(Y)
=> ! [Z] : decides(W,Y,Z) ) ) ) ).
fof(p2,axiom,
! [W] :
( ( program(W)
& ! [Y] :
( program(Y)
=> ! [Z] : decides(W,Y,Z) ) )
=> ! [Y,Z] :
( ( ( program(Y)
& halts2(Y,Z) )
=> ( halts3(W,Y,Z)
& outputs(W,good) ) )
& ( ( program(Y)
& ~ halts2(Y,Z) )
=> ( halts3(W,Y,Z)
& outputs(W,bad) ) ) ) ) ).
fof(p3,axiom,
( ? [W] :
( program(W)
& ! [Y] :
( ( ( program(Y)
& halts2(Y,Y) )
=> ( halts3(W,Y,Y)
& outputs(W,good) ) )
& ( ( program(Y)
& ~ halts2(Y,Y) )
=> ( halts3(W,Y,Y)
& outputs(W,bad) ) ) ) )
=> ? [V] :
( program(V)
& ! [Y] :
( ( ( program(Y)
& halts2(Y,Y) )
=> ( halts2(V,Y)
& outputs(V,good) ) )
& ( ( program(Y)
& ~ halts2(Y,Y) )
=> ( halts2(V,Y)
& outputs(V,bad) ) ) ) ) ) ).
fof(p4,axiom,
( ? [V] :
( program(V)
& ! [Y] :
( ( ( program(Y)
& halts2(Y,Y) )
=> ( halts2(V,Y)
& outputs(V,good) ) )
& ( ( program(Y)
& ~ halts2(Y,Y) )
=> ( halts2(V,Y)
& outputs(V,bad) ) ) ) )
=> ? [U] :
( program(U)
& ! [Y] :
( ( ( program(Y)
& halts2(Y,Y) )
=> ~ halts2(U,Y) )
& ( ( program(Y)
& ~ halts2(Y,Y) )
=> ( halts2(U,Y)
& outputs(U,bad) ) ) ) ) ) ).
fof(prove_this,conjecture,
~ ? [X1] :
( algorithm(X1)
& ! [Y1] :
( program(Y1)
=> ! [Z1] : decides(X1,Y1,Z1) ) ) ).
%--------------------------------------------------------------------------