TPTP Problem File: COM002-2.p

View Solutions - Solve Problem

%--------------------------------------------------------------------------
% File     : COM002-2 : TPTP v9.2.1. Released v1.0.0.
% Domain   : Computing Theory
% Problem  : A program correctness theorem.
% Version  : Especial.
%            Theorem formulation : Considers failure rather than success
%            in the state space.
% English  : A computing state space, with eight states - P1 to P8.
%            P1 leads to P3 via P2. There is a branch at P3 such that the
%            following state is either P4 or P6. P6 leads to P8, which has
%            a loop back to P3, while P4 leads to termination. The problem
%            is to show that there is a loop in the computation, passing
%            through P3.

% Refs     : [RR+72] Reboh et al. (1972), Study of automatic theorem provin
% Source   : [TPTP]
% Names    :

% Status   : Unsatisfiable
% Rating   : 0.00 v2.1.0, 0.12 v2.0.0
% Syntax   : Number of clauses     :   19 (  15 unt;   1 nHn;  18 RR)
%            Number of literals    :   25 (   0 equ;   8 neg)
%            Maximal clause size   :    3 (   1 avg)
%            Maximal term depth    :    3 (   1 avg)
%            Number of predicates  :    4 (   4 usr;   0 prp; 2-2 aty)
%            Number of functors    :   22 (  22 usr;  16 con; 0-2 aty)
%            Number of variables   :   11 (   1 sgn)
% SPC      : CNF_UNS_RFO_NEQ_NHN

% Comments : I suspect this problem was originally by R.M. Burstall.
%--------------------------------------------------------------------------
cnf(direct_success,axiom,
    ( ~ fails(Goal_state,Start_state)
    | ~ follows(Goal_state,Start_state) ) ).

cnf(transitivity_of_success,axiom,
    ( ~ fails(Goal_state,Start_state)
    | fails(Goal_state,Intermediate_state)
    | fails(Intermediate_state,Start_state) ) ).

cnf(goto_success,axiom,
    ( ~ fails(Goal_state,Start_state)
    | ~ has(Start_state,goto(Label))
    | ~ labels(Label,Goal_state) ) ).

cnf(conditional_success,axiom,
    ( ~ fails(Goal_state,Start_state)
    | ~ has(Start_state,ifthen(Condition,Goal_state)) ) ).

cnf(state_1,hypothesis,
    has(p1,assign(register_j,n0)) ).

cnf(transition_1_to_2,hypothesis,
    follows(p2,p1) ).

cnf(state_2,hypothesis,
    has(p2,assign(register_k,n1)) ).

cnf(label_state_3,hypothesis,
    labels(loop,p3) ).

cnf(transition_2_to_3,hypothesis,
    follows(p3,p2) ).

cnf(state_3,hypothesis,
    has(p3,ifthen(equal_function(register_j,n),p4)) ).

cnf(state_4,hypothesis,
    has(p4,goto(out)) ).

cnf(transition_4_to_5,hypothesis,
    follows(p5,p4) ).

cnf(transition_3_to_6,hypothesis,
    follows(p6,p3) ).

cnf(state_6,hypothesis,
    has(p6,assign(register_k,times(n2,register_k))) ).

cnf(transition_6_to_7,hypothesis,
    follows(p7,p6) ).

cnf(state_7,hypothesis,
    has(p7,assign(register_j,plus(register_j,n1))) ).

cnf(transition_7_to_8,hypothesis,
    follows(p8,p7) ).

cnf(state_8,hypothesis,
    has(p8,goto(loop)) ).

cnf(prove_there_is_a_loop_through_p3,negated_conjecture,
    fails(p3,p3) ).

%--------------------------------------------------------------------------