TPTP Problem File: COL121-2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : COL121-2 : TPTP v9.0.0. Released v3.2.0.
% Domain : Combinatory Logic
% Problem : Problem about combinators
% Version : [Pau06] axioms : Reduced > Especial.
% English :
% Refs : [Pau06] Paulson (2006), Email to G. Sutcliffe
% Source : [Pau06]
% Names :
% Status : Unsatisfiable
% Rating : 0.07 v9.0.0, 0.00 v7.4.0, 0.17 v7.3.0, 0.00 v5.4.0, 0.06 v5.3.0, 0.10 v5.2.0, 0.08 v5.1.0, 0.06 v5.0.0, 0.07 v4.0.1, 0.00 v3.2.0
% Syntax : Number of clauses : 10 ( 3 unt; 0 nHn; 10 RR)
% Number of literals : 22 ( 0 equ; 13 neg)
% Maximal clause size : 4 ( 2 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 2 ( 2 usr; 0 prp; 2-3 aty)
% Number of functors : 11 ( 11 usr; 6 con; 0-4 aty)
% Number of variables : 21 ( 0 sgn)
% SPC : CNF_UNS_RFO_NEQ_HRN
% Comments : The problems in the [Pau06] collection each have very many axioms,
% of which only a small selection are required for the refutation.
% The mission is to find those few axioms, after which a refutation
% can be quite easily found. This version has only the necessary
% axioms.
%------------------------------------------------------------------------------
cnf(cls_Comb_Odiamond__strip__lemmaE_0,axiom,
( ~ c_Comb_Odiamond(V_r,T_a)
| ~ c_in(c_Pair(V_x,V_y_H,T_a,T_a),V_r,tc_prod(T_a,T_a))
| ~ c_in(c_Pair(V_x,V_y,T_a,T_a),c_Transitive__Closure_Ortrancl(V_r,T_a),tc_prod(T_a,T_a))
| c_in(c_Pair(V_y_H,c_Comb_Odiamond__strip__lemmaE__1(V_r,V_y,V_y_H,T_a),T_a,T_a),c_Transitive__Closure_Ortrancl(V_r,T_a),tc_prod(T_a,T_a)) ) ).
cnf(cls_Comb_Odiamond__strip__lemmaE_1,axiom,
( ~ c_Comb_Odiamond(V_r,T_a)
| ~ c_in(c_Pair(V_x,V_y_H,T_a,T_a),V_r,tc_prod(T_a,T_a))
| ~ c_in(c_Pair(V_x,V_y,T_a,T_a),c_Transitive__Closure_Ortrancl(V_r,T_a),tc_prod(T_a,T_a))
| c_in(c_Pair(V_y,c_Comb_Odiamond__strip__lemmaE__1(V_r,V_y,V_y_H,T_a),T_a,T_a),V_r,tc_prod(T_a,T_a)) ) ).
cnf(cls_Transitive__Closure_Or__into__rtrancl_0,axiom,
( ~ c_in(V_p,V_r,tc_prod(T_a,T_a))
| c_in(V_p,c_Transitive__Closure_Ortrancl(V_r,T_a),tc_prod(T_a,T_a)) ) ).
cnf(cls_Transitive__Closure_Ortrancl__trans_0,axiom,
( ~ c_in(c_Pair(V_b,V_c,T_a,T_a),c_Transitive__Closure_Ortrancl(V_r,T_a),tc_prod(T_a,T_a))
| ~ c_in(c_Pair(V_a,V_b,T_a,T_a),c_Transitive__Closure_Ortrancl(V_r,T_a),tc_prod(T_a,T_a))
| c_in(c_Pair(V_a,V_c,T_a,T_a),c_Transitive__Closure_Ortrancl(V_r,T_a),tc_prod(T_a,T_a)) ) ).
cnf(cls_conjecture_0,negated_conjecture,
c_Comb_Odiamond(v_r,t_a) ).
cnf(cls_conjecture_2,negated_conjecture,
c_in(c_Pair(v_ya,v_z,t_a,t_a),v_r,tc_prod(t_a,t_a)) ).
cnf(cls_conjecture_3,negated_conjecture,
c_in(c_Pair(v_y,v_xaa,t_a,t_a),c_Transitive__Closure_Ortrancl(v_r,t_a),tc_prod(t_a,t_a)) ).
cnf(cls_conjecture_4,negated_conjecture,
( c_in(c_Pair(v_ya,v_x(V_U),t_a,t_a),c_Transitive__Closure_Ortrancl(v_r,t_a),tc_prod(t_a,t_a))
| ~ c_in(c_Pair(v_y,V_U,t_a,t_a),c_Transitive__Closure_Ortrancl(v_r,t_a),tc_prod(t_a,t_a)) ) ).
cnf(cls_conjecture_5,negated_conjecture,
( c_in(c_Pair(V_U,v_x(V_U),t_a,t_a),c_Transitive__Closure_Ortrancl(v_r,t_a),tc_prod(t_a,t_a))
| ~ c_in(c_Pair(v_y,V_U,t_a,t_a),c_Transitive__Closure_Ortrancl(v_r,t_a),tc_prod(t_a,t_a)) ) ).
cnf(cls_conjecture_6,negated_conjecture,
( ~ c_in(c_Pair(v_xaa,V_U,t_a,t_a),c_Transitive__Closure_Ortrancl(v_r,t_a),tc_prod(t_a,t_a))
| ~ c_in(c_Pair(v_z,V_U,t_a,t_a),c_Transitive__Closure_Ortrancl(v_r,t_a),tc_prod(t_a,t_a)) ) ).
%------------------------------------------------------------------------------