TPTP Problem File: COL108-1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : COL108-1 : TPTP v9.0.0. Released v3.2.0.
% Domain : Combinatory Logic
% Problem : Problem about combinators
% Version : [Pau06] axioms : Especial.
% English :
% Refs : [Pau06] Paulson (2006), Email to G. Sutcliffe
% Source : [Pau06]
% Names : Comb__diamond_parcontract_4 [Pau06]
% Status : Unsatisfiable
% Rating : 1.00 v3.2.0
% Syntax : Number of clauses : 1411 ( 233 unt; 42 nHn;1316 RR)
% Number of literals : 2694 ( 253 equ;1263 neg)
% Maximal clause size : 5 ( 1 avg)
% Maximal term depth : 5 ( 1 avg)
% Number of predicates : 82 ( 81 usr; 0 prp; 1-3 aty)
% Number of functors : 147 ( 147 usr; 28 con; 0-6 aty)
% Number of variables : 2024 ( 227 sgn)
% SPC : CNF_UNS_RFO_SEQ_NHN
% Comments : The problems in the [Pau06] collection each have very many axioms,
% of which only a small selection are required for the refutation.
% The mission is to find those few axioms, after which a refutation
% can be quite easily found.
%------------------------------------------------------------------------------
include('Axioms/COL002-1.ax').
include('Axioms/COL002-0.ax').
include('Axioms/MSC001-2.ax').
include('Axioms/MSC001-0.ax').
%------------------------------------------------------------------------------
cnf(cls_conjecture_0,negated_conjecture,
c_in(c_Pair(v_x,v_ya,tc_Comb_Ocomb,tc_Comb_Ocomb),c_Comb_Oparcontract,tc_prod(tc_Comb_Ocomb,tc_Comb_Ocomb)) ).
cnf(cls_conjecture_1,negated_conjecture,
c_in(c_Pair(v_z,v_w,tc_Comb_Ocomb,tc_Comb_Ocomb),c_Comb_Oparcontract,tc_prod(tc_Comb_Ocomb,tc_Comb_Ocomb)) ).
cnf(cls_conjecture_2,negated_conjecture,
c_in(c_Pair(c_Comb_Ocomb_Oop_A_D_D(v_x,v_z),v_xba,tc_Comb_Ocomb,tc_Comb_Ocomb),c_Comb_Oparcontract,tc_prod(tc_Comb_Ocomb,tc_Comb_Ocomb)) ).
cnf(cls_conjecture_3,negated_conjecture,
( c_in(c_Pair(v_ya,v_xb(V_U),tc_Comb_Ocomb,tc_Comb_Ocomb),c_Comb_Oparcontract,tc_prod(tc_Comb_Ocomb,tc_Comb_Ocomb))
| ~ c_in(c_Pair(v_x,V_U,tc_Comb_Ocomb,tc_Comb_Ocomb),c_Comb_Oparcontract,tc_prod(tc_Comb_Ocomb,tc_Comb_Ocomb)) ) ).
cnf(cls_conjecture_4,negated_conjecture,
( c_in(c_Pair(V_U,v_xb(V_U),tc_Comb_Ocomb,tc_Comb_Ocomb),c_Comb_Oparcontract,tc_prod(tc_Comb_Ocomb,tc_Comb_Ocomb))
| ~ c_in(c_Pair(v_x,V_U,tc_Comb_Ocomb,tc_Comb_Ocomb),c_Comb_Oparcontract,tc_prod(tc_Comb_Ocomb,tc_Comb_Ocomb)) ) ).
cnf(cls_conjecture_5,negated_conjecture,
( c_in(c_Pair(v_w,v_xaa(V_U),tc_Comb_Ocomb,tc_Comb_Ocomb),c_Comb_Oparcontract,tc_prod(tc_Comb_Ocomb,tc_Comb_Ocomb))
| ~ c_in(c_Pair(v_z,V_U,tc_Comb_Ocomb,tc_Comb_Ocomb),c_Comb_Oparcontract,tc_prod(tc_Comb_Ocomb,tc_Comb_Ocomb)) ) ).
cnf(cls_conjecture_6,negated_conjecture,
( c_in(c_Pair(V_U,v_xaa(V_U),tc_Comb_Ocomb,tc_Comb_Ocomb),c_Comb_Oparcontract,tc_prod(tc_Comb_Ocomb,tc_Comb_Ocomb))
| ~ c_in(c_Pair(v_z,V_U,tc_Comb_Ocomb,tc_Comb_Ocomb),c_Comb_Oparcontract,tc_prod(tc_Comb_Ocomb,tc_Comb_Ocomb)) ) ).
cnf(cls_conjecture_7,negated_conjecture,
( ~ c_in(c_Pair(v_xba,V_U,tc_Comb_Ocomb,tc_Comb_Ocomb),c_Comb_Oparcontract,tc_prod(tc_Comb_Ocomb,tc_Comb_Ocomb))
| ~ c_in(c_Pair(c_Comb_Ocomb_Oop_A_D_D(v_ya,v_w),V_U,tc_Comb_Ocomb,tc_Comb_Ocomb),c_Comb_Oparcontract,tc_prod(tc_Comb_Ocomb,tc_Comb_Ocomb)) ) ).
%------------------------------------------------------------------------------