TPTP Problem File: COL100-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : COL100-1 : TPTP v9.0.0. Released v2.7.0.
% Domain : Combinatory Logic
% Problem : diamond_trancl_2c1
% Version : Reduced > Especial.
% English : diamond(r) ==> diamond(r^+)
% Refs : [Men03] Meng (2003), Email to G. Sutcliffe
% Source : [Men03]
% Names :
% Status : Unsatisfiable
% Rating : 0.00 v8.1.0, 0.11 v7.5.0, 0.10 v7.4.0, 0.22 v7.2.0, 0.25 v7.1.0, 0.29 v6.3.0, 0.33 v6.2.0, 0.00 v6.1.0, 0.20 v6.0.0, 0.11 v5.5.0, 0.06 v5.4.0, 0.07 v5.3.0, 0.17 v5.2.0, 0.12 v5.1.0, 0.14 v5.0.0, 0.29 v4.1.0, 0.22 v4.0.1, 0.17 v3.3.0, 0.14 v3.2.0, 0.00 v2.7.0
% Syntax : Number of clauses : 18 ( 8 unt; 0 nHn; 17 RR)
% Number of literals : 35 ( 10 equ; 21 neg)
% Maximal clause size : 4 ( 1 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 4 ( 3 usr; 0 prp; 1-2 aty)
% Number of functors : 12 ( 12 usr; 7 con; 0-4 aty)
% Number of variables : 35 ( 9 sgn)
% SPC : CNF_UNS_RFO_SEQ_HRN
% Comments : Problem coming out of an Isabelle proof.
%--------------------------------------------------------------------------
%----axioms from CombZF.thy.
%----free algebra for K, S, comb_app(P,Q).
cnf(k_s,axiom,
combK != combS ).
cnf(k_app,axiom,
combK != comb_app(P,Q) ).
cnf(s_app,axiom,
combS != comb_app(P,Q) ).
cnf(app_app1,axiom,
( comb_app(P1,Q1) != comb_app(P2,Q2)
| P1 = P2 ) ).
cnf(app_app2,axiom,
( comb_app(P1,Q1) != comb_app(P2,Q2)
| Q1 = Q2 ) ).
cnf(app_app3,axiom,
( P1 != P2
| Q1 != Q2
| comb_app(P1,Q1) = comb_app(P2,Q2) ) ).
%----axiom r_intro_trancl, trans_trancl, transD, diamond_strip_lemmaD are needed here locally.
cnf(r_into_trancl,axiom,
( ~ member(pair(A,B),R)
| member(pair(A,B),trancl(R)) ) ).
cnf(trans_trancl,axiom,
trans(trancl(R)) ).
cnf(transD,axiom,
( ~ trans(R)
| ~ member(pair(A,B),R)
| ~ member(pair(B,C),R)
| member(pair(A,C),R) ) ).
cnf(diamond_strip_lemmaD1,axiom,
( ~ diamond(R)
| ~ member(pair(X,Y),trancl(R))
| ~ member(pair(X,YP),R)
| member(pair(YP,diamond_strip_lemmaD_sk1(X,Y,YP,R)),trancl(R)) ) ).
cnf(diamond_strip_lemmaD2,axiom,
( ~ diamond(R)
| ~ member(pair(X,Y),trancl(R))
| ~ member(pair(X,YP),R)
| member(pair(Y,diamond_strip_lemmaD_sk1(X,Y,YP,R)),R) ) ).
cnf(diamond_trancl_2h1,hypothesis,
diamond(r) ).
cnf(diamond_trancl_2h2,hypothesis,
member(pair(y,ya),trancl(r)) ).
cnf(diamond_trancl_2h3,hypothesis,
member(pair(ya,z),r) ).
cnf(diamond_trancl_2h4,hypothesis,
( ~ member(pair(y,YP),trancl(r))
| member(pair(ya,sk1(YP)),trancl(r)) ) ).
cnf(diamond_trancl_2h5,hypothesis,
( ~ member(pair(y,YP),trancl(r))
| member(pair(YP,sk1(YP)),trancl(r)) ) ).
cnf(diamond_trancl_2c1,negated_conjecture,
member(pair(y,yp),trancl(r)) ).
cnf(diamond_trancl_2c2,negated_conjecture,
( ~ member(pair(z,ZA),trancl(r))
| ~ member(pair(yp,ZA),trancl(r)) ) ).
%--------------------------------------------------------------------------