TPTP Problem File: COL081-2.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : COL081-2 : TPTP v9.0.0. Released v1.2.0.
% Domain : Combinatory Logic
% Problem : Abst k(k(X)) = k(k(X))
% Version : [Jec95] (equality) axioms : Reduced > Incomplete.
% English :
% Refs : [Jec95] Jech (1995), Otter Experiments in a System of Combinat
% Source : [TPTP]
% Names :
% Status : Unsatisfiable
% Rating : 0.27 v9.0.0, 0.20 v8.2.0, 0.25 v8.1.0, 0.26 v7.5.0, 0.35 v7.4.0, 0.41 v7.3.0, 0.38 v7.2.0, 0.42 v7.1.0, 0.36 v7.0.0, 0.23 v6.4.0, 0.29 v6.3.0, 0.20 v6.2.0, 0.30 v6.1.0, 0.36 v6.0.0, 0.29 v5.5.0, 0.38 v5.4.0, 0.22 v5.3.0, 0.40 v5.2.0, 0.25 v5.1.0, 0.33 v5.0.0, 0.40 v4.1.0, 0.33 v4.0.1, 0.38 v4.0.0, 0.29 v3.7.0, 0.14 v3.4.0, 0.17 v3.3.0, 0.22 v3.2.0, 0.11 v3.1.0, 0.20 v2.7.0, 0.12 v2.6.0, 0.17 v2.5.0, 0.25 v2.4.0, 0.25 v2.2.1, 0.00 v2.1.0, 1.00 v2.0.0
% Syntax : Number of clauses : 5 ( 4 unt; 0 nHn; 2 RR)
% Number of literals : 6 ( 6 equ; 2 neg)
% Maximal clause size : 2 ( 1 avg)
% Maximal term depth : 4 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 6 ( 6 usr; 3 con; 0-2 aty)
% Number of variables : 8 ( 1 sgn)
% SPC : CNF_UNS_RFO_PEQ_NUE
% Comments : Reduced to use only the axioms used in [Jec95].
%--------------------------------------------------------------------------
%----Include axioms of Type-respecting combinators
%include('Axioms/COL001-0.ax').
%--------------------------------------------------------------------------
cnf(k_definition,axiom,
apply(k(X),Y) = X ).
cnf(abstraction,axiom,
apply(apply(apply(abstraction,X),Y),Z) = apply(apply(X,k(Z)),apply(Y,Z)) ).
cnf(extensionality2,axiom,
( X = Y
| apply(X,n(X,Y)) != apply(Y,n(X,Y)) ) ).
%----Subsitution axioms
cnf(identity_definition,axiom,
apply(identity,X) = X ).
cnf(prove_TRC2c,negated_conjecture,
k(k(b)) != apply(abstraction,k(k(b))) ).
%--------------------------------------------------------------------------