TPTP Problem File: COL081-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : COL081-1 : TPTP v9.0.0. Released v1.2.0.
% Domain : Combinatory Logic
% Problem : Abst k(k(X)) = k(k(X))
% Version : [Jec95] (equality) axioms.
% English :
% Refs : [Jec95] Jech (1995), Otter Experiments in a System of Combinat
% Source : [Jec95]
% Names : Proposition 2c [Jec95]
% Status : Unsatisfiable
% Rating : 0.33 v9.0.0, 0.27 v8.2.0, 0.38 v8.1.0, 0.32 v7.5.0, 0.41 v7.4.0, 0.53 v7.3.0, 0.38 v7.2.0, 0.42 v7.1.0, 0.36 v7.0.0, 0.54 v6.4.0, 0.50 v6.1.0, 0.64 v6.0.0, 0.43 v5.5.0, 0.50 v5.4.0, 0.56 v5.3.0, 0.70 v5.2.0, 0.50 v5.1.0, 0.56 v5.0.0, 0.60 v4.1.0, 0.56 v4.0.1, 0.62 v4.0.0, 0.57 v3.7.0, 0.29 v3.4.0, 0.17 v3.3.0, 0.33 v3.2.0, 0.22 v3.1.0, 0.20 v2.7.0, 0.25 v2.6.0, 0.50 v2.5.0, 0.25 v2.4.0, 0.25 v2.2.1, 0.50 v2.2.0, 0.25 v2.1.0, 1.00 v2.0.0
% Syntax : Number of clauses : 12 ( 10 unt; 1 nHn; 3 RR)
% Number of literals : 14 ( 14 equ; 3 neg)
% Maximal clause size : 2 ( 1 avg)
% Maximal term depth : 4 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 10 ( 10 usr; 6 con; 0-2 aty)
% Number of variables : 19 ( 3 sgn)
% SPC : CNF_UNS_RFO_PEQ_NUE
% Comments :
%--------------------------------------------------------------------------
%----Include axioms of Type-respecting combinators
include('Axioms/COL001-0.ax').
%--------------------------------------------------------------------------
cnf(identity_definition,axiom,
apply(identity,X) = X ).
cnf(prove_TRC2c,negated_conjecture,
k(k(b)) != apply(abstraction,k(k(b))) ).
%--------------------------------------------------------------------------