TPTP Problem File: COL074-2.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : COL074-2 : TPTP v9.0.0. Released v1.2.0.
% Domain : Combinatory Logic
% Problem : Unsatisfiable variant of TRC
% Version : [Jec95] (equality) axioms : Augmented.
% English : If the function symbol K is replaced by the K combinator then
% the resultant system is inconsistent.
% Refs : [Jec95] Jech (1995), Otter Experiments in a System of Combinat
% Source : [Jec95]
% Names : - [Jec95]
% Status : Unknown
% Rating : 1.00 v2.0.0
% Syntax : Number of clauses : 11 ( 9 unt; 1 nHn; 2 RR)
% Number of literals : 13 ( 13 equ; 2 neg)
% Maximal clause size : 2 ( 1 avg)
% Maximal term depth : 4 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 9 ( 9 usr; 6 con; 0-2 aty)
% Number of variables : 20 ( 4 sgn)
% SPC : CNF_UNK_RFO_PEQ_NUE
% Comments : Infinox says this has no finite (counter-) models.
%--------------------------------------------------------------------------
%----Don't include axioms of Type-respecting combinators
%include('Axioms/COL001-0.ax').
%--------------------------------------------------------------------------
%----Replace k function by k combinator
%input_clause(k_definition,axiom,
% [++equal(apply(k(X),Y),X)]).
cnf(k_definition,negated_conjecture,
apply(apply(k,X),Y) = X ).
cnf(projection1,axiom,
apply(projection1,pair(X,Y)) = X ).
cnf(projection2,axiom,
apply(projection2,pair(X,Y)) = Y ).
cnf(pairing,axiom,
pair(apply(projection1,X),apply(projection2,X)) = X ).
cnf(pairwise_application,axiom,
apply(pair(X,Y),Z) = pair(apply(X,Z),apply(Y,Z)) ).
%----Replace k function by k combinator
%input_clause(abstraction,axiom,
% [++equal(apply(apply(apply(abstraction,X),Y),Z),apply(apply(X,k(Z)),
%apply(Y,Z)))]).
cnf(abstraction,negated_conjecture,
apply(apply(apply(abstraction,X),Y),Z) = apply(apply(X,apply(k,Z)),apply(Y,Z)) ).
cnf(equality,axiom,
apply(eq,pair(X,X)) = projection1 ).
cnf(extensionality1,axiom,
( X = Y
| apply(eq,pair(X,Y)) = projection2 ) ).
cnf(extensionality2,axiom,
( X = Y
| apply(X,n(X,Y)) != apply(Y,n(X,Y)) ) ).
cnf(different_projections,axiom,
projection1 != projection2 ).
%----This is the extra lemma
cnf(diagonal_combinator,axiom,
apply(apply(f,X),Y) = apply(X,X) ).
%--------------------------------------------------------------------------