TPTP Problem File: COL071-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : COL071-1 : TPTP v9.0.0. Released v1.2.0.
% Domain : Combinatory Logic
% Problem : Strong fixed point for N and Q
% Version : [WM88] (equality) axioms.
% English : The strong fixed point property holds for the set
% P consisting of the combinators N and Q, where ((Nx)y)z
% = ((xz)y)z, ((Qx)y)z = y(xz).
% Refs : [WM88] Wos & McCune (1988), Challenge Problems Focusing on Eq
% : [Wos93] Wos (1993), The Kernel Strategy and Its Use for the St
% : [Zha95] Zhang (1995), Email to G. Sutcliffe
% Source : [Wos93]
% Names : Question 14 [Wos93]
% Status : Satisfiable
% Rating : 0.57 v9.0.0, 0.33 v8.2.0, 0.20 v8.1.0, 0.50 v7.5.0, 0.25 v7.3.0, 0.00 v6.1.0, 0.20 v6.0.0, 0.00 v5.5.0, 0.20 v5.4.0, 0.25 v5.3.0, 0.33 v3.2.0, 0.67 v3.1.0, 0.33 v2.4.0, 1.00 v2.3.0, 0.67 v2.2.1, 0.75 v2.2.0, 1.00 v2.0.0
% Syntax : Number of clauses : 3 ( 3 unt; 0 nHn; 1 RR)
% Number of literals : 3 ( 3 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 4 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 4 ( 4 usr; 2 con; 0-2 aty)
% Number of variables : 7 ( 0 sgn)
% SPC : CNF_SAT_RFO_PEQ_UEQ
% Comments : [Zha95] provided a 4 element model of these clauses.
%--------------------------------------------------------------------------
cnf(n_definition,axiom,
apply(apply(apply(n,X),Y),Z) = apply(apply(apply(X,Z),Y),Z) ).
cnf(q_definition,axiom,
apply(apply(apply(q,X),Y),Z) = apply(Y,apply(X,Z)) ).
cnf(prove_fixed_point,negated_conjecture,
apply(Y,f(Y)) != apply(f(Y),apply(Y,f(Y))) ).
%--------------------------------------------------------------------------