TPTP Problem File: COL067-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : COL067-1 : TPTP v9.0.0. Released v1.2.0.
% Domain : Combinatory Logic
% Problem : Strong fixed point for B and S
% Version : [WM88] (equality) axioms.
% English : The strong fixed point property holds for the set
% P consisting of the combinators B and S, where ((Sx)y)z
% = (xz)(yz), ((Bx)y)z = x(yz).
% Refs : [WM88] Wos & McCune (1988), Challenge Problems Focusing on Eq
% : [Wos93] Wos (1993), The Kernel Strategy and Its Use for the St
% Source : [Wos93]
% Names : Question 4 [Wos93]
% : Question 5 [Wos93]
% Status : Unknown
% Rating : 1.00 v2.0.0
% Syntax : Number of clauses : 3 ( 3 unt; 0 nHn; 1 RR)
% Number of literals : 3 ( 3 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 4 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 4 ( 4 usr; 2 con; 0-2 aty)
% Number of variables : 7 ( 0 sgn)
% SPC : CNF_UNK_RFO_PEQ_UEQ
% Comments :
%--------------------------------------------------------------------------
cnf(s_definition,axiom,
apply(apply(apply(s,X),Y),Z) = apply(apply(X,Z),apply(Y,Z)) ).
cnf(b_definition,axiom,
apply(apply(apply(b,X),Y),Z) = apply(X,apply(Y,Z)) ).
cnf(prove_fixed_point,negated_conjecture,
apply(Y,f(Y)) != apply(f(Y),apply(Y,f(Y))) ).
%--------------------------------------------------------------------------