TPTP Problem File: COL066-2.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : COL066-2 : TPTP v9.0.0. Bugfixed v1.2.0.
% Domain : Combinatory Logic
% Problem : Find combinator equivalent to P from B, Q and W
% Version : [WM88] (equality) axioms.
% Theorem formulation : The combinator is provided and checked.
% English : Construct from B, Q and W alone a combinator that behaves as
% the combinator P does, where ((Bx)y)z = x(yz), ((Qx)y)z =
% y(xz), (Wx)y = (xy)y, (((Px)y)y)z = (xy)((xy)z)
% Refs : [WM88] Wos & McCune (1988), Challenge Problems Focusing on Eq
% : [WW+90] Wos et al. (1990), Automated Reasoning Contributes to
% Source : [TPTP]
% Names :
% Status : Unsatisfiable
% Rating : 0.09 v9.0.0, 0.05 v8.2.0, 0.12 v8.1.0, 0.15 v7.5.0, 0.12 v7.4.0, 0.17 v7.3.0, 0.11 v7.1.0, 0.00 v7.0.0, 0.05 v6.4.0, 0.11 v6.3.0, 0.06 v6.2.0, 0.07 v6.1.0, 0.06 v6.0.0, 0.24 v5.5.0, 0.16 v5.4.0, 0.07 v5.3.0, 0.00 v5.2.0, 0.07 v5.1.0, 0.00 v5.0.0, 0.07 v4.1.0, 0.09 v4.0.1, 0.07 v4.0.0, 0.08 v3.7.0, 0.11 v3.4.0, 0.12 v3.3.0, 0.00 v2.7.0, 0.09 v2.6.0, 0.00 v2.1.0, 0.29 v2.0.0
% Syntax : Number of clauses : 4 ( 4 unt; 0 nHn; 1 RR)
% Number of literals : 4 ( 4 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 9 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 7 ( 7 usr; 6 con; 0-2 aty)
% Number of variables : 8 ( 0 sgn)
% SPC : CNF_UNS_RFO_PEQ_UEQ
% Comments :
% Bugfixes : v1.2.0 : Redundant [fgh]_substitution axioms removed.
%--------------------------------------------------------------------------
cnf(b_definition,axiom,
apply(apply(apply(b,X),Y),Z) = apply(X,apply(Y,Z)) ).
cnf(q_definition,axiom,
apply(apply(apply(q,X),Y),Z) = apply(Y,apply(X,Z)) ).
cnf(w_definition,axiom,
apply(apply(w,X),Y) = apply(apply(X,Y),Y) ).
%----This is the P equivalent
cnf(prove_p_combinator,negated_conjecture,
apply(apply(apply(apply(apply(apply(q,q),apply(w,apply(q,apply(q,q)))),x),y),y),z) != apply(apply(x,y),apply(apply(x,y),z)) ).
%--------------------------------------------------------------------------