TPTP Problem File: COL055-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : COL055-1 : TPTP v9.0.0. Released v1.0.0.
% Domain : Combinatory Logic
% Problem : Happy Birds
% Version : Especial.
% English : There exists a bird which is fond of some other bird. Prove
% that any bird that is fond of at least one bird must
% be happy.
% Refs : [Smu85] Smullyan (1978), To Mock a Mocking Bird and Other Logi
% Source : [ANL]
% Names : bird7.ver1.in [ANL]
% Status : Unsatisfiable
% Rating : 0.00 v5.3.0, 0.10 v5.2.0, 0.00 v2.0.0
% Syntax : Number of clauses : 2 ( 1 unt; 0 nHn; 2 RR)
% Number of literals : 3 ( 3 equ; 2 neg)
% Maximal clause size : 2 ( 1 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 3 ( 3 usr; 2 con; 0-2 aty)
% Number of variables : 2 ( 0 sgn)
% SPC : CNF_UNS_RFO_PEQ_NUE
% Comments :
%--------------------------------------------------------------------------
%----First part of denial clause: there exists a bird which is fond
%----of some other bird.
cnf(fond_bird_exists,hypothesis,
response(a,b) = b ).
%----Hypothesis: Any bird that is fond of at least one bird must be happy.
%---- - FAx [If TEy (xy = y) then TEz TEw (xz = w) and (xw = z)].
%---- TEx -[- TEy (xy = y) | TEz TEw ((xz = w) and (xw = z))].
%---- TEx [ TEy (xy = y) and - TEz TEw ((xz = w) and (xw = z)) ].
%---- TEx [ TEy (xy = y) and FAz FAw -((xz = w) and (xw = z)) ].
%---- TEy (Ay = y) and FAz FAw -[(Az = w) and (Aw = z)].
%---- (AB = B) and [-(Az = w) | -(Aw = z)].
%---- Placing (AB = B) in the list of axiom, we have:
cnf(prove_happiness,negated_conjecture,
( response(a,Z) != W
| response(a,W) != Z ) ).
%--------------------------------------------------------------------------