TPTP Problem File: COL054-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : COL054-1 : TPTP v9.0.0. Released v1.0.0.
% Domain : Combinatory Logic
% Problem : Compatible Birds
% Version : Especial.
% English : There exists a mockingbird. For all birds x and y, there
% exists a bird z that composes x with y for all birds w. Prove
% that any two birds are compatible.
% Refs : [Smu85] Smullyan (1978), To Mock a Mocking Bird and Other Logi
% Source : [ANL]
% Names : bird6.ver1.in [ANL]
% Status : Unsatisfiable
% Rating : 0.20 v9.0.0, 0.07 v8.2.0, 0.12 v8.1.0, 0.11 v7.5.0, 0.12 v7.4.0, 0.18 v7.3.0, 0.15 v7.2.0, 0.17 v7.1.0, 0.09 v7.0.0, 0.08 v6.4.0, 0.21 v6.3.0, 0.10 v6.2.0, 0.20 v6.1.0, 0.18 v6.0.0, 0.14 v5.5.0, 0.25 v5.4.0, 0.11 v5.3.0, 0.20 v5.2.0, 0.12 v5.1.0, 0.11 v5.0.0, 0.10 v4.1.0, 0.11 v4.0.1, 0.12 v4.0.0, 0.00 v3.3.0, 0.11 v3.2.0, 0.00 v2.0.0
% Syntax : Number of clauses : 3 ( 2 unt; 0 nHn; 1 RR)
% Number of literals : 4 ( 4 equ; 2 neg)
% Maximal clause size : 2 ( 1 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 5 ( 5 usr; 3 con; 0-2 aty)
% Number of variables : 6 ( 0 sgn)
% SPC : CNF_UNS_RFO_PEQ_NUE
% Comments :
%--------------------------------------------------------------------------
%---- There exists a mocking bird (Mock).
%---- TEx FAy [response(x,y) = response(y,y)].
%---- response(Mock,y) = response(y,y).
cnf(mocking_bird_exists,axiom,
response(mocking_bird,Y) = response(Y,Y) ).
%----For all birds x and y, there exists a bird z that composes x with
%----y for all birds w.
%---- FAx FAy TEz FAw [response(z,w) = response(x,response(y,w))].
%---- response(comp(x,y),w) = response(x,response(y,w)).
cnf(composer_exists,hypothesis,
response(compose(X,Y),W) = response(X,response(Y,W)) ).
%----Hypothesis: Any two birds are compatible.
%----Finding clause (using xy to replace response(x,y)):
%---- -FAx FAy TEw TEz [(xw = z) and (yz = w)].
%---- TEx TEy FAw FAz -[(xw = z) and (yz = w)].
%---- Letting A = x, B = y, x = w, and y = z,
%---- -(Ax = y) | -(By = x).
cnf(prove_birds_are_compatible,negated_conjecture,
( response(a,X) != Y
| response(b,Y) != X ) ).
%--------------------------------------------------------------------------