TPTP Problem File: COL052-2.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : COL052-2 : TPTP v9.0.0. Released v1.0.0.
% Domain : Combinatory Logic
% Problem : A Question on Agreeable Birds
% Version : Especial.
% Theorem formulation : Explicit definition of agreeable.
% English : For all birds x and y, there exists a bird z that composes
% x with y for all birds w. Prove that if C is agreeable then
% A is agreeable.
% Refs : [Smu85] Smullyan (1978), To Mock a Mocking Bird and Other Logi
% Source : [ANL]
% Names : bird4.ver2.in [ANL]
% Status : Unsatisfiable
% Rating : 0.08 v9.0.0, 0.12 v8.2.0, 0.08 v8.1.0, 0.11 v7.5.0, 0.10 v7.4.0, 0.22 v7.2.0, 0.25 v7.1.0, 0.29 v6.3.0, 0.00 v6.0.0, 0.11 v5.5.0, 0.12 v5.4.0, 0.13 v5.3.0, 0.33 v5.2.0, 0.12 v5.1.0, 0.14 v5.0.0, 0.00 v4.1.0, 0.11 v4.0.1, 0.00 v3.3.0, 0.14 v3.2.0, 0.00 v2.4.0, 0.00 v2.0.0
% Syntax : Number of clauses : 6 ( 4 unt; 0 nHn; 4 RR)
% Number of literals : 8 ( 4 equ; 3 neg)
% Maximal clause size : 2 ( 1 avg)
% Maximal term depth : 3 ( 2 avg)
% Number of predicates : 2 ( 1 usr; 0 prp; 1-2 aty)
% Number of functors : 7 ( 7 usr; 3 con; 0-2 aty)
% Number of variables : 7 ( 0 sgn)
% SPC : CNF_UNS_RFO_SEQ_HRN
% Comments :
%--------------------------------------------------------------------------
%----For all birds x and y, there exists a bird z that composes x with
%----y for all birds w.
%---- FAx FAy TEz FAw [response(z,w) = response(x,response(y,w))].
%---- response(comp(x,y),w) = response(x,response(y,w)).
cnf(composer_exists,axiom,
response(compose(X,Y),W) = response(X,response(Y,W)) ).
%----Definition of agreeable: A bird x is agreeable if and only if for all
%----birds y there exists a bird z such that xz = yz.
%---- 1) If agreeable(x) then FAy TEz [response(x,z) =
%---- response(y,z)] and
%---- 2) if TEx FAy TEz [response(x,z) = response(y,z)] then
%---- agreeable(x).
%---- 1) -agreeable(x) | response(x,common_bird(y)) =
%---- response(y,common_bird(y)).
%---- 2) FAx TEy FAz -[response(x,z) = response(y,z)] |
%---- agreeable(x).
%---- -[response(x,z) = response(compatible(x),z)] |
%---- agreeable(x).
cnf(agreeable1,axiom,
( ~ agreeable(X)
| response(X,common_bird(Y)) = response(Y,common_bird(Y)) ) ).
cnf(agreeable2,axiom,
( response(X,Z) != response(compatible(X),Z)
| agreeable(X) ) ).
%----Hypothesis: If C is agreeable then A is agreeable.
%---- - [ If agreeable(C) then agreeable(A) ].
%---- - [ -agreeable(C) | agreeable(A) ].
%---- agreeable(C) and -agreeable(A).
cnf(c_is_agreeable,hypothesis,
agreeable(c) ).
cnf(prove_a_is_agreeable,negated_conjecture,
~ agreeable(a) ).
%----C composes A with B. WHY IS THIS HERE??
cnf(c_composes_a_with_b,hypothesis,
c = compose(a,b) ).
%--------------------------------------------------------------------------