TPTP Problem File: COL029-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : COL029-1 : TPTP v9.0.0. Released v1.0.0.
% Domain : Combinatory Logic
% Problem : Strong fixed point for U
% Version : [WM88] (equality) axioms.
% English : The strong fixed point property holds for the set
% P consisting of the combinator U, where (Ux)y = y((xx)y).
% Refs : [Smu85] Smullyan (1978), To Mock a Mocking Bird and Other Logi
% : [MW87] McCune & Wos (1987), A Case Study in Automated Theorem
% : [WM88] Wos & McCune (1988), Challenge Problems Focusing on Eq
% : [MW88] McCune & Wos (1988), Some Fixed Point Problems in Comb
% : [Wos93] Wos (1993), The Kernel Strategy and Its Use for the St
% Source : [MW88]
% Names : - [MW88]
% : Question 1 [Wos93]
% Status : Unsatisfiable
% Rating : 0.05 v8.2.0, 0.08 v8.1.0, 0.15 v7.5.0, 0.08 v7.4.0, 0.13 v7.3.0, 0.11 v7.1.0, 0.06 v7.0.0, 0.00 v6.0.0, 0.05 v5.5.0, 0.00 v2.0.0
% Syntax : Number of clauses : 2 ( 2 unt; 0 nHn; 1 RR)
% Number of literals : 2 ( 2 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 4 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 3 ( 3 usr; 1 con; 0-2 aty)
% Number of variables : 3 ( 0 sgn)
% SPC : CNF_UNS_RFO_PEQ_UEQ
% Comments :
%--------------------------------------------------------------------------
cnf(u_definition,axiom,
apply(apply(u,X),Y) = apply(Y,apply(apply(X,X),Y)) ).
cnf(prove_fixed_point,negated_conjecture,
apply(Y,f(Y)) != apply(f(Y),apply(Y,f(Y))) ).
%--------------------------------------------------------------------------