TPTP Problem File: COL006-4.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : COL006-4 : TPTP v9.0.0. Released v1.0.0.
% Domain : Combinatory Logic
% Problem : Strong fixed point for S and K
% Version : [WM88] (equality) axioms : Augmented > Especial.
% Theorem formulation : The fixed point is provided and checked.
% English : The strong fixed point property holds for the set
% P consisting of the combinators S and K alone, where
% ((Sx)y)z = (xz)(yz), (Kx)y = x.
% Refs : [WM88] Wos & McCune (1988), Challenge Problems Focusing on Eq
% Source : [TPTP]
% Names :
% Status : Unsatisfiable
% Rating : 0.38 v9.0.0, 0.50 v8.1.0, 0.33 v7.5.0, 0.50 v7.4.0, 0.44 v7.3.0, 0.56 v7.2.0, 0.50 v7.1.0, 0.43 v7.0.0, 0.71 v6.3.0, 0.83 v6.2.0, 0.33 v6.1.0, 0.60 v6.0.0, 0.89 v5.5.0, 0.94 v5.4.0, 0.87 v5.3.0, 0.92 v5.2.0, 0.88 v5.1.0, 0.86 v4.1.0, 0.67 v3.3.0, 0.57 v3.1.0, 0.89 v2.7.0, 0.83 v2.6.0, 0.71 v2.5.0, 0.60 v2.4.0, 0.83 v2.2.1, 0.89 v2.2.0, 0.86 v2.1.0, 1.00 v2.0.0
% Syntax : Number of clauses : 4 ( 3 unt; 0 nHn; 2 RR)
% Number of literals : 5 ( 3 equ; 2 neg)
% Maximal clause size : 2 ( 1 avg)
% Maximal term depth : 8 ( 2 avg)
% Number of predicates : 2 ( 1 usr; 0 prp; 1-2 aty)
% Number of functors : 4 ( 4 usr; 3 con; 0-2 aty)
% Number of variables : 6 ( 1 sgn)
% SPC : CNF_UNS_RFO_SEQ_HRN
% Comments :
%--------------------------------------------------------------------------
cnf(s_definition,axiom,
apply(apply(apply(s,X),Y),Z) = apply(apply(X,Z),apply(Y,Z)) ).
cnf(k_definition,axiom,
apply(apply(k,X),Y) = X ).
cnf(strong_fixed_point,axiom,
( apply(Strong_fixed_point,fixed_pt) != apply(fixed_pt,apply(Strong_fixed_point,fixed_pt))
| fixed_point(Strong_fixed_point) ) ).
cnf(prove_strong_fixed_point,negated_conjecture,
~ fixed_point(apply(apply(s,apply(k,apply(apply(apply(s,s),apply(apply(s,k),k)),apply(apply(s,s),apply(s,k))))),apply(apply(s,apply(k,s)),k))) ).
%--------------------------------------------------------------------------