TPTP Problem File: COL003-6.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : COL003-6 : TPTP v9.0.0. Released v1.0.0.
% Domain : Combinatory Logic
% Problem : Strong fixed point for B and W
% Version : [WM88] (equality) axioms : Augmented > Especial.
% Theorem formulation : The fixed point is provided and checked.
% English : The strong fixed point property holds for the set
% P consisting of the combinators B and W alone, where ((Bx)y)z
% = x(yz) and (Wx)y = (xy)y.
% Refs : [Smu85] Smullyan (1978), To Mock a Mocking Bird and Other Logi
% : [MW87] McCune & Wos (1987), A Case Study in Automated Theorem
% : [WM88] Wos & McCune (1988), Challenge Problems Focusing on Eq
% : [Wos93] Wos (1993), The Kernel Strategy and Its Use for the St
% Source : [TPTP]
% Names :
% Status : Unsatisfiable
% Rating : 0.00 v9.0.0, 0.12 v8.2.0, 0.25 v8.1.0, 0.00 v7.5.0, 0.20 v7.4.0, 0.11 v7.3.0, 0.22 v7.2.0, 0.12 v7.1.0, 0.14 v7.0.0, 0.29 v6.3.0, 0.33 v6.2.0, 0.00 v6.1.0, 0.20 v6.0.0, 0.56 v5.5.0, 0.69 v5.4.0, 0.67 v5.3.0, 0.75 v5.2.0, 0.50 v5.1.0, 0.43 v4.1.0, 0.44 v4.0.1, 0.33 v3.3.0, 0.43 v3.2.0, 0.29 v3.1.0, 0.22 v2.7.0, 0.17 v2.6.0, 0.00 v2.5.0, 0.20 v2.4.0, 0.33 v2.2.1, 0.56 v2.2.0, 0.57 v2.1.0, 0.80 v2.0.0
% Syntax : Number of clauses : 4 ( 3 unt; 0 nHn; 2 RR)
% Number of literals : 5 ( 3 equ; 2 neg)
% Maximal clause size : 2 ( 1 avg)
% Maximal term depth : 8 ( 2 avg)
% Number of predicates : 2 ( 1 usr; 0 prp; 1-2 aty)
% Number of functors : 4 ( 4 usr; 3 con; 0-2 aty)
% Number of variables : 6 ( 0 sgn)
% SPC : CNF_UNS_RFO_SEQ_HRN
% Comments : This the N sage of [McCune & Wos, 1987].
%--------------------------------------------------------------------------
cnf(b_definition,axiom,
apply(apply(apply(b,X),Y),Z) = apply(X,apply(Y,Z)) ).
cnf(w_definition,axiom,
apply(apply(w,X),Y) = apply(apply(X,Y),Y) ).
cnf(strong_fixed_point,axiom,
( apply(Strong_fixed_point,fixed_pt) != apply(fixed_pt,apply(Strong_fixed_point,fixed_pt))
| fixed_point(Strong_fixed_point) ) ).
cnf(prove_strong_fixed_point,negated_conjecture,
~ fixed_point(apply(apply(b,apply(apply(b,apply(apply(b,apply(w,w)),w)),b)),b)) ).
%--------------------------------------------------------------------------