TPTP Problem File: COL001-2.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : COL001-2 : TPTP v9.0.0. Released v1.0.0.
% Domain : Combinatory Logic
% Problem : Weak fixed point for S and K
% Version : [WM88] (equality) axioms : Augmented.
% English : The weak fixed point property holds for the set P consisting
% of the combinators S and K alone, where ((Sx)y)z = (xz)(yz)
% and (Kx)y = x.
% Refs : [WM88] Wos & McCune (1988), Challenge Problems Focusing on Eq
% Source : [TPTP]
% Names :
% Status : Unsatisfiable
% Rating : 0.18 v9.0.0, 0.14 v8.2.0, 0.21 v8.1.0, 0.20 v7.5.0, 0.25 v7.4.0, 0.30 v7.3.0, 0.26 v7.1.0, 0.17 v7.0.0, 0.16 v6.4.0, 0.21 v6.3.0, 0.18 v6.2.0, 0.21 v6.1.0, 0.12 v6.0.0, 0.24 v5.5.0, 0.21 v5.4.0, 0.13 v5.3.0, 0.17 v5.2.0, 0.21 v5.1.0, 0.27 v5.0.0, 0.29 v4.1.0, 0.18 v4.0.1, 0.21 v4.0.0, 0.31 v3.7.0, 0.11 v3.4.0, 0.12 v3.3.0, 0.07 v3.1.0, 0.11 v2.7.0, 0.00 v2.1.0, 0.13 v2.0.0
% Syntax : Number of clauses : 6 ( 6 unt; 0 nHn; 1 RR)
% Number of literals : 6 ( 6 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 6 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 7 ( 7 usr; 6 con; 0-2 aty)
% Number of variables : 11 ( 1 sgn)
% SPC : CNF_UNS_RFO_PEQ_UEQ
% Comments : This allows the use of B and I in the proof, as done in the
% "Proof of Theorem C1" in [WM88].
%--------------------------------------------------------------------------
cnf(s_definition,axiom,
apply(apply(apply(s,X),Y),Z) = apply(apply(X,Z),apply(Y,Z)) ).
cnf(k_definition,axiom,
apply(apply(k,X),Y) = X ).
cnf(b_definition,axiom,
apply(apply(apply(b,X),Y),Z) = apply(X,apply(Y,Z)) ).
cnf(i_definition,axiom,
apply(i,X) = X ).
cnf(sb_property,axiom,
apply(apply(apply(s,apply(b,X)),i),apply(apply(s,apply(b,X)),i)) = apply(x,apply(apply(apply(s,apply(b,X)),i),apply(apply(s,apply(b,X)),i))) ).
cnf(prove_fixed_point,negated_conjecture,
Y != apply(combinator,Y) ).
%--------------------------------------------------------------------------