TPTP Problem File: CAT041^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : CAT041^1 : TPTP v9.2.1. Released v9.2.0.
% Domain : Category Theory
% Problem : Simple problem from category theory dhol_3
% Version : Especial.
% English :
% Refs : [RRB23] Rothgang et al. (2023), Theorem Proving in Dependently
% : [Rot25] Rothgang (2025), Email to Geoff Sutcliffe
% : [RK+25] Ranalter et al. (2025), The Dependently Typed Higher-O
% Source : [Rot25]
% Names : CategoryTheory/category-theory-lemmas-dhol_3.p [Rot25]
% Status : Theorem
% Rating : ? v9.2.0
% Syntax : Number of formulae : 8 ( 3 unt; 4 typ; 0 def)
% Number of atoms : 6 ( 6 equ; 0 cnn)
% Maximal formula atoms : 3 ( 1 avg)
% Number of connectives : 80 ( 0 ~; 0 |; 1 &; 78 @)
% ( 0 <=>; 1 =>; 0 <=; 0 <~>)
% Maximal formula depth : 8 ( 6 avg)
% Number of types : 1 ( 1 usr)
% Number of type decls : 4 ( 0 !>P; 2 !>D)
% Number of type conns : 4 ( 4 >; 0 *; 0 +; 0 <<)
% Number of symbols : 4 ( 3 usr; 0 con; 1-5 aty)
% Number of variables : 23 ( 0 ^; 19 !; 0 ?; 23 :)
% ( 4 !>; 0 ?*; 0 @-; 0 @+)
% SPC : DH0_THM_EQU_NAR
% Comments :
%------------------------------------------------------------------------------
thf(obj_type,type,
obj: $tType ).
thf(mor_type,type,
mor: obj > obj > $tType ).
thf(id_type,type,
id:
!>[X: obj] : ( mor @ X @ X ) ).
thf(comp_type,type,
comp:
!>[X: obj,Y: obj,Z: obj] : ( ( mor @ X @ Y ) > ( mor @ Y @ Z ) > ( mor @ X @ Z ) ) ).
thf(ax1,axiom,
! [X: obj,Y: obj,M: mor @ X @ Y] :
( ( comp @ X @ X @ Y @ ( id @ X ) @ M )
= M ) ).
thf(ax2,axiom,
! [X: obj,Y: obj,M: mor @ X @ Y] :
( ( comp @ X @ Y @ Y @ M @ ( id @ Y ) )
= M ) ).
thf(ax3,axiom,
! [X: obj,Y: obj,Z: obj,A: obj,F: mor @ X @ Y,G: mor @ Y @ Z,H: mor @ Z @ A] :
( ( comp @ X @ Y @ A @ F @ ( comp @ Y @ Z @ A @ G @ H ) )
= ( comp @ X @ Z @ A @ ( comp @ X @ Y @ Z @ F @ G ) @ H ) ) ).
thf(conj,conjecture,
! [X: obj,Y: obj,Z: obj,F: mor @ X @ Y,G: mor @ Y @ X] :
( ( ( ( comp @ X @ Y @ X @ F @ G )
= ( id @ X ) )
& ( ( comp @ Y @ X @ Y @ G @ F )
= ( id @ Y ) ) )
=> ! [H: mor @ X @ Z] :
( ( comp @ X @ Y @ Z @ F @ ( comp @ Y @ X @ Z @ G @ H ) )
= H ) ) ).
%------------------------------------------------------------------------------