TPTP Problem File: CAT040^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : CAT040^1 : TPTP v9.2.1. Released v9.2.0.
% Domain : Category Theory
% Problem : Simple problem from category theory dhol_2
% Version : Especial.
% English :
% Refs : [RRB23] Rothgang et al. (2023), Theorem Proving in Dependently
% : [Rot25] Rothgang (2025), Email to Geoff Sutcliffe
% : [RK+25] Ranalter et al. (2025), The Dependently Typed Higher-O
% Source : [Rot25]
% Names : CategoryTheory/category-theory-lemmas-dhol_2.p [Rot25]
% Status : Theorem
% Rating : ? v9.2.0
% Syntax : Number of formulae : 8 ( 3 unt; 4 typ; 0 def)
% Number of atoms : 8 ( 8 equ; 0 cnn)
% Maximal formula atoms : 5 ( 2 avg)
% Number of connectives : 66 ( 0 ~; 0 |; 3 &; 62 @)
% ( 0 <=>; 1 =>; 0 <=; 0 <~>)
% Maximal formula depth : 10 ( 7 avg)
% Number of types : 1 ( 1 usr)
% Number of type decls : 4 ( 0 !>P; 2 !>D)
% Number of type conns : 4 ( 4 >; 0 *; 0 +; 0 <<)
% Number of symbols : 4 ( 3 usr; 0 con; 1-5 aty)
% Number of variables : 22 ( 0 ^; 18 !; 0 ?; 22 :)
% ( 4 !>; 0 ?*; 0 @-; 0 @+)
% SPC : DH0_THM_EQU_NAR
% Comments :
%------------------------------------------------------------------------------
thf(obj_type,type,
obj: $tType ).
thf(mor_type,type,
mor: obj > obj > $tType ).
thf(id_type,type,
id:
!>[X: obj] : ( mor @ X @ X ) ).
thf(comp_type,type,
comp:
!>[X: obj,Y: obj,Z: obj] : ( ( mor @ X @ Y ) > ( mor @ Y @ Z ) > ( mor @ X @ Z ) ) ).
thf(ax1,axiom,
! [X: obj,Y: obj,M: mor @ X @ Y] :
( ( comp @ X @ X @ Y @ ( id @ X ) @ M )
= M ) ).
thf(ax2,axiom,
! [X: obj,Y: obj,M: mor @ X @ Y] :
( ( comp @ X @ Y @ Y @ M @ ( id @ Y ) )
= M ) ).
thf(ax3,axiom,
! [X: obj,Y: obj,Z: obj,A: obj,F: mor @ X @ Y,G: mor @ Y @ Z,H: mor @ Z @ A] :
( ( comp @ X @ Y @ A @ F @ ( comp @ Y @ Z @ A @ G @ H ) )
= ( comp @ X @ Z @ A @ ( comp @ X @ Y @ Z @ F @ G ) @ H ) ) ).
thf(conj,conjecture,
! [X: obj,Y: obj,Z: obj,F: mor @ X @ Y,G: mor @ Y @ Z] :
( ( ( X = Y )
& ( Y = Z )
& ( F
= ( id @ X ) )
& ( G
= ( id @ Y ) ) )
=> ( ( comp @ X @ Y @ Z @ F @ G )
= ( id @ Z ) ) ) ).
%------------------------------------------------------------------------------