TPTP Problem File: CAT035+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : CAT035+1 : TPTP v9.0.0. Released v3.4.0.
% Domain : Category Theory
% Problem : Yoneda Embedding T05
% Version : [Urb08] axioms : Especial.
% English :
% Refs : [Woj97] Wojciechowski (1997), Yoneda Embedding
% : [Urb07] Urban (2007), MPTP 0.2: Design, Implementation, and In
% : [Urb08] Urban (2006), Email to G. Sutcliffe
% Source : [Urb08]
% Names : t5_yoneda_1 [Urb08]
% Status : Theorem
% Rating : 1.00 v7.4.0, 0.97 v7.1.0, 0.96 v7.0.0, 1.00 v3.7.0, 0.95 v3.5.0, 1.00 v3.4.0
% Syntax : Number of formulae : 74 ( 17 unt; 0 def)
% Number of atoms : 298 ( 37 equ)
% Maximal formula atoms : 20 ( 4 avg)
% Number of connectives : 247 ( 23 ~; 2 |; 126 &)
% ( 7 <=>; 89 =>; 0 <=; 0 <~>)
% Maximal formula depth : 20 ( 6 avg)
% Maximal term depth : 4 ( 1 avg)
% Number of predicates : 18 ( 16 usr; 1 prp; 0-4 aty)
% Number of functors : 24 ( 24 usr; 1 con; 0-6 aty)
% Number of variables : 169 ( 158 !; 11 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Normal version: includes the axioms (which may be theorems from
% other articles) and background that are possibly necessary.
% : Translated by MPTP from the Mizar Mathematical Library 4.48.930.
% : The problem encoding is based on set theory.
%------------------------------------------------------------------------------
fof(t5_yoneda_1,conjecture,
! [A] :
( ( v2_cat_1(A)
& l1_cat_1(A) )
=> ! [B] :
( m2_cat_1(B,A,k12_nattra_1(A,k1_yoneda_1(A)))
=> ( ( v2_funct_1(k12_cat_1(A,k12_nattra_1(A,k1_yoneda_1(A)),B))
& v10_cat_1(B,A,k12_nattra_1(A,k1_yoneda_1(A))) )
=> v2_funct_1(B) ) ) ) ).
fof(abstractness_v1_cat_1,axiom,
! [A] :
( l1_cat_1(A)
=> ( v1_cat_1(A)
=> A = g1_cat_1(u1_cat_1(A),u2_cat_1(A),u3_cat_1(A),u4_cat_1(A),u5_cat_1(A),u6_cat_1(A)) ) ) ).
fof(antisymmetry_r2_hidden,axiom,
! [A,B] :
( r2_hidden(A,B)
=> ~ r2_hidden(B,A) ) ).
fof(cc1_funct_1,axiom,
! [A] :
( v1_xboole_0(A)
=> v1_funct_1(A) ) ).
fof(cc1_relset_1,axiom,
! [A,B,C] :
( m1_subset_1(C,k1_zfmisc_1(k2_zfmisc_1(A,B)))
=> v1_relat_1(C) ) ).
fof(cc2_funct_1,axiom,
! [A] :
( ( v1_relat_1(A)
& v1_xboole_0(A)
& v1_funct_1(A) )
=> ( v1_relat_1(A)
& v1_funct_1(A)
& v2_funct_1(A) ) ) ).
fof(d1_funct_2,axiom,
! [A,B,C] :
( m2_relset_1(C,A,B)
=> ( ( ( B = k1_xboole_0
=> A = k1_xboole_0 )
=> ( v1_funct_2(C,A,B)
<=> A = k4_relset_1(A,B,C) ) )
& ( B = k1_xboole_0
=> ( A = k1_xboole_0
| ( v1_funct_2(C,A,B)
<=> C = k1_xboole_0 ) ) ) ) ) ).
fof(d1_nattra_1,axiom,
! [A] :
( ( v2_cat_1(A)
& l1_cat_1(A) )
=> ! [B] :
( ( v2_cat_1(B)
& l1_cat_1(B) )
=> ! [C] :
( m2_cat_1(C,A,B)
=> ! [D] :
( m1_subset_1(D,u1_cat_1(A))
=> ! [E] :
( m1_subset_1(E,u1_cat_1(A))
=> ( k6_cat_1(A,D,E) != k1_xboole_0
=> ! [F] :
( m1_cat_1(F,A,D,E)
=> k3_nattra_1(A,B,C,D,E,F) = k8_funct_2(u2_cat_1(A),u2_cat_1(B),C,F) ) ) ) ) ) ) ) ).
fof(d1_yoneda_1,axiom,
! [A] :
( ( v2_cat_1(A)
& l1_cat_1(A) )
=> k1_yoneda_1(A) = k12_ens_1(k17_ens_1(A)) ) ).
fof(d20_cat_1,axiom,
! [A] :
( ( v2_cat_1(A)
& l1_cat_1(A) )
=> ! [B] :
( ( v2_cat_1(B)
& l1_cat_1(B) )
=> ! [C] :
( m2_cat_1(C,A,B)
=> ! [D] :
( m1_subset_1(D,u1_cat_1(A))
=> k13_cat_1(A,B,C,D) = k8_funct_2(u1_cat_1(A),u1_cat_1(B),k12_cat_1(A,B,C),D) ) ) ) ) ).
fof(d24_cat_1,axiom,
! [A] :
( ( v2_cat_1(A)
& l1_cat_1(A) )
=> ! [B] :
( ( v2_cat_1(B)
& l1_cat_1(B) )
=> ! [C] :
( m2_cat_1(C,A,B)
=> ( v10_cat_1(C,A,B)
<=> ! [D] :
( m1_subset_1(D,u1_cat_1(A))
=> ! [E] :
( m1_subset_1(E,u1_cat_1(A))
=> ( k6_cat_1(A,D,E) != k1_xboole_0
=> ! [F] :
( m1_cat_1(F,A,D,E)
=> ! [G] :
( m1_cat_1(G,A,D,E)
=> ( k8_funct_2(u2_cat_1(A),u2_cat_1(B),C,F) = k8_funct_2(u2_cat_1(A),u2_cat_1(B),C,G)
=> F = G ) ) ) ) ) ) ) ) ) ) ).
fof(d8_funct_1,axiom,
! [A] :
( ( v1_relat_1(A)
& v1_funct_1(A) )
=> ( v2_funct_1(A)
<=> ! [B,C] :
( ( r2_hidden(B,k1_relat_1(A))
& r2_hidden(C,k1_relat_1(A))
& k1_funct_1(A,B) = k1_funct_1(A,C) )
=> B = C ) ) ) ).
fof(dt_g1_cat_1,axiom,
! [A,B,C,D,E,F] :
( ( ~ v1_xboole_0(A)
& ~ v1_xboole_0(B)
& v1_funct_1(C)
& v1_funct_2(C,B,A)
& m1_relset_1(C,B,A)
& v1_funct_1(D)
& v1_funct_2(D,B,A)
& m1_relset_1(D,B,A)
& v1_funct_1(E)
& m1_relset_1(E,k2_zfmisc_1(B,B),B)
& v1_funct_1(F)
& v1_funct_2(F,A,B)
& m1_relset_1(F,A,B) )
=> ( v1_cat_1(g1_cat_1(A,B,C,D,E,F))
& l1_cat_1(g1_cat_1(A,B,C,D,E,F)) ) ) ).
fof(dt_k12_cat_1,axiom,
! [A,B,C] :
( ( v2_cat_1(A)
& l1_cat_1(A)
& v2_cat_1(B)
& l1_cat_1(B)
& v1_funct_1(C)
& v1_funct_2(C,u2_cat_1(A),u2_cat_1(B))
& m1_relset_1(C,u2_cat_1(A),u2_cat_1(B)) )
=> ( v1_funct_1(k12_cat_1(A,B,C))
& v1_funct_2(k12_cat_1(A,B,C),u1_cat_1(A),u1_cat_1(B))
& m2_relset_1(k12_cat_1(A,B,C),u1_cat_1(A),u1_cat_1(B)) ) ) ).
fof(dt_k12_ens_1,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> l1_cat_1(k12_ens_1(A)) ) ).
fof(dt_k12_nattra_1,axiom,
! [A,B] :
( ( v2_cat_1(A)
& l1_cat_1(A)
& v2_cat_1(B)
& l1_cat_1(B) )
=> ( v1_cat_1(k12_nattra_1(A,B))
& v2_cat_1(k12_nattra_1(A,B))
& l1_cat_1(k12_nattra_1(A,B)) ) ) ).
fof(dt_k13_cat_1,axiom,
! [A,B,C,D] :
( ( v2_cat_1(A)
& l1_cat_1(A)
& v2_cat_1(B)
& l1_cat_1(B)
& m2_cat_1(C,A,B)
& m1_subset_1(D,u1_cat_1(A)) )
=> m1_subset_1(k13_cat_1(A,B,C,D),u1_cat_1(B)) ) ).
fof(dt_k17_ens_1,axiom,
$true ).
fof(dt_k1_funct_1,axiom,
$true ).
fof(dt_k1_relat_1,axiom,
$true ).
fof(dt_k1_xboole_0,axiom,
$true ).
fof(dt_k1_yoneda_1,axiom,
! [A] :
( ( v2_cat_1(A)
& l1_cat_1(A) )
=> ( v2_cat_1(k1_yoneda_1(A))
& l1_cat_1(k1_yoneda_1(A)) ) ) ).
fof(dt_k1_zfmisc_1,axiom,
$true ).
fof(dt_k2_cat_1,axiom,
! [A,B] :
( ( l1_cat_1(A)
& m1_subset_1(B,u2_cat_1(A)) )
=> m1_subset_1(k2_cat_1(A,B),u1_cat_1(A)) ) ).
fof(dt_k2_zfmisc_1,axiom,
$true ).
fof(dt_k3_cat_1,axiom,
! [A,B] :
( ( l1_cat_1(A)
& m1_subset_1(B,u2_cat_1(A)) )
=> m1_subset_1(k3_cat_1(A,B),u1_cat_1(A)) ) ).
fof(dt_k3_nattra_1,axiom,
! [A,B,C,D,E,F] :
( ( v2_cat_1(A)
& l1_cat_1(A)
& v2_cat_1(B)
& l1_cat_1(B)
& m2_cat_1(C,A,B)
& m1_subset_1(D,u1_cat_1(A))
& m1_subset_1(E,u1_cat_1(A))
& m1_cat_1(F,A,D,E) )
=> m1_cat_1(k3_nattra_1(A,B,C,D,E,F),B,k13_cat_1(A,B,C,D),k13_cat_1(A,B,C,E)) ) ).
fof(dt_k4_relset_1,axiom,
! [A,B,C] :
( m1_relset_1(C,A,B)
=> m1_subset_1(k4_relset_1(A,B,C),k1_zfmisc_1(A)) ) ).
fof(dt_k6_cat_1,axiom,
! [A,B,C] :
( ( l1_cat_1(A)
& m1_subset_1(B,u1_cat_1(A))
& m1_subset_1(C,u1_cat_1(A)) )
=> m1_subset_1(k6_cat_1(A,B,C),k1_zfmisc_1(u2_cat_1(A))) ) ).
fof(dt_k8_funct_2,axiom,
! [A,B,C,D] :
( ( ~ v1_xboole_0(A)
& v1_funct_1(C)
& v1_funct_2(C,A,B)
& m1_relset_1(C,A,B)
& m1_subset_1(D,A) )
=> m1_subset_1(k8_funct_2(A,B,C,D),B) ) ).
fof(dt_l1_cat_1,axiom,
$true ).
fof(dt_m1_cat_1,axiom,
! [A,B,C] :
( ( l1_cat_1(A)
& m1_subset_1(B,u1_cat_1(A))
& m1_subset_1(C,u1_cat_1(A)) )
=> ! [D] :
( m1_cat_1(D,A,B,C)
=> m1_subset_1(D,u2_cat_1(A)) ) ) ).
fof(dt_m1_relset_1,axiom,
$true ).
fof(dt_m1_subset_1,axiom,
$true ).
fof(dt_m2_cat_1,axiom,
! [A,B] :
( ( v2_cat_1(A)
& l1_cat_1(A)
& v2_cat_1(B)
& l1_cat_1(B) )
=> ! [C] :
( m2_cat_1(C,A,B)
=> ( v1_funct_1(C)
& v1_funct_2(C,u2_cat_1(A),u2_cat_1(B))
& m2_relset_1(C,u2_cat_1(A),u2_cat_1(B)) ) ) ) ).
fof(dt_m2_relset_1,axiom,
! [A,B,C] :
( m2_relset_1(C,A,B)
=> m1_subset_1(C,k1_zfmisc_1(k2_zfmisc_1(A,B))) ) ).
fof(dt_u1_cat_1,axiom,
! [A] :
( l1_cat_1(A)
=> ~ v1_xboole_0(u1_cat_1(A)) ) ).
fof(dt_u2_cat_1,axiom,
! [A] :
( l1_cat_1(A)
=> ~ v1_xboole_0(u2_cat_1(A)) ) ).
fof(dt_u3_cat_1,axiom,
! [A] :
( l1_cat_1(A)
=> ( v1_funct_1(u3_cat_1(A))
& v1_funct_2(u3_cat_1(A),u2_cat_1(A),u1_cat_1(A))
& m2_relset_1(u3_cat_1(A),u2_cat_1(A),u1_cat_1(A)) ) ) ).
fof(dt_u4_cat_1,axiom,
! [A] :
( l1_cat_1(A)
=> ( v1_funct_1(u4_cat_1(A))
& v1_funct_2(u4_cat_1(A),u2_cat_1(A),u1_cat_1(A))
& m2_relset_1(u4_cat_1(A),u2_cat_1(A),u1_cat_1(A)) ) ) ).
fof(dt_u5_cat_1,axiom,
! [A] :
( l1_cat_1(A)
=> ( v1_funct_1(u5_cat_1(A))
& m2_relset_1(u5_cat_1(A),k2_zfmisc_1(u2_cat_1(A),u2_cat_1(A)),u2_cat_1(A)) ) ) ).
fof(dt_u6_cat_1,axiom,
! [A] :
( l1_cat_1(A)
=> ( v1_funct_1(u6_cat_1(A))
& v1_funct_2(u6_cat_1(A),u1_cat_1(A),u2_cat_1(A))
& m2_relset_1(u6_cat_1(A),u1_cat_1(A),u2_cat_1(A)) ) ) ).
fof(existence_l1_cat_1,axiom,
? [A] : l1_cat_1(A) ).
fof(existence_m1_cat_1,axiom,
! [A,B,C] :
( ( l1_cat_1(A)
& m1_subset_1(B,u1_cat_1(A))
& m1_subset_1(C,u1_cat_1(A)) )
=> ? [D] : m1_cat_1(D,A,B,C) ) ).
fof(existence_m1_relset_1,axiom,
! [A,B] :
? [C] : m1_relset_1(C,A,B) ).
fof(existence_m1_subset_1,axiom,
! [A] :
? [B] : m1_subset_1(B,A) ).
fof(existence_m2_cat_1,axiom,
! [A,B] :
( ( v2_cat_1(A)
& l1_cat_1(A)
& v2_cat_1(B)
& l1_cat_1(B) )
=> ? [C] : m2_cat_1(C,A,B) ) ).
fof(existence_m2_relset_1,axiom,
! [A,B] :
? [C] : m2_relset_1(C,A,B) ).
fof(fc1_xboole_0,axiom,
v1_xboole_0(k1_xboole_0) ).
fof(fc4_ens_1,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ( v1_cat_1(k12_ens_1(A))
& v2_cat_1(k12_ens_1(A)) ) ) ).
fof(fc5_ens_1,axiom,
! [A] :
( ( v2_cat_1(A)
& l1_cat_1(A) )
=> ~ v1_xboole_0(k17_ens_1(A)) ) ).
fof(free_g1_cat_1,axiom,
! [A,B,C,D,E,F] :
( ( ~ v1_xboole_0(A)
& ~ v1_xboole_0(B)
& v1_funct_1(C)
& v1_funct_2(C,B,A)
& m1_relset_1(C,B,A)
& v1_funct_1(D)
& v1_funct_2(D,B,A)
& m1_relset_1(D,B,A)
& v1_funct_1(E)
& m1_relset_1(E,k2_zfmisc_1(B,B),B)
& v1_funct_1(F)
& v1_funct_2(F,A,B)
& m1_relset_1(F,A,B) )
=> ! [G,H,I,J,K,L] :
( g1_cat_1(A,B,C,D,E,F) = g1_cat_1(G,H,I,J,K,L)
=> ( A = G
& B = H
& C = I
& D = J
& E = K
& F = L ) ) ) ).
fof(rc1_funct_1,axiom,
? [A] :
( v1_relat_1(A)
& v1_funct_1(A) ) ).
fof(rc1_xboole_0,axiom,
? [A] : v1_xboole_0(A) ).
fof(rc2_funct_1,axiom,
? [A] :
( v1_relat_1(A)
& v1_xboole_0(A)
& v1_funct_1(A) ) ).
fof(rc2_xboole_0,axiom,
? [A] : ~ v1_xboole_0(A) ).
fof(rc3_funct_1,axiom,
? [A] :
( v1_relat_1(A)
& v1_funct_1(A)
& v2_funct_1(A) ) ).
fof(redefinition_k4_relset_1,axiom,
! [A,B,C] :
( m1_relset_1(C,A,B)
=> k4_relset_1(A,B,C) = k1_relat_1(C) ) ).
fof(redefinition_k8_funct_2,axiom,
! [A,B,C,D] :
( ( ~ v1_xboole_0(A)
& v1_funct_1(C)
& v1_funct_2(C,A,B)
& m1_relset_1(C,A,B)
& m1_subset_1(D,A) )
=> k8_funct_2(A,B,C,D) = k1_funct_1(C,D) ) ).
fof(redefinition_m2_relset_1,axiom,
! [A,B,C] :
( m2_relset_1(C,A,B)
<=> m1_relset_1(C,A,B) ) ).
fof(reflexivity_r1_tarski,axiom,
! [A,B] : r1_tarski(A,A) ).
fof(t126_cat_1,axiom,
! [A] :
( ( v2_cat_1(A)
& l1_cat_1(A) )
=> ! [B] :
( ( v2_cat_1(B)
& l1_cat_1(B) )
=> ! [C] :
( m2_cat_1(C,A,B)
=> ! [D] :
( m1_subset_1(D,u1_cat_1(A))
=> ! [E] :
( m1_subset_1(E,u1_cat_1(A))
=> ~ ( k6_cat_1(A,D,E) != k1_xboole_0
& k6_cat_1(B,k13_cat_1(A,B,C,D),k13_cat_1(A,B,C,E)) = k1_xboole_0 ) ) ) ) ) ) ).
fof(t19_cat_1,axiom,
! [A] :
( l1_cat_1(A)
=> ! [B] :
( m1_subset_1(B,u2_cat_1(A))
=> k6_cat_1(A,k2_cat_1(A,B),k3_cat_1(A,B)) != k1_xboole_0 ) ) ).
fof(t1_subset,axiom,
! [A,B] :
( r2_hidden(A,B)
=> m1_subset_1(A,B) ) ).
fof(t22_cat_1,axiom,
! [A] :
( l1_cat_1(A)
=> ! [B] :
( m1_subset_1(B,u2_cat_1(A))
=> m1_cat_1(B,A,k2_cat_1(A,B),k3_cat_1(A,B)) ) ) ).
fof(t23_cat_1,axiom,
! [A] :
( l1_cat_1(A)
=> ! [B] :
( m1_subset_1(B,u1_cat_1(A))
=> ! [C] :
( m1_subset_1(C,u1_cat_1(A))
=> ! [D] :
( m1_cat_1(D,A,B,C)
=> ( k6_cat_1(A,B,C) != k1_xboole_0
=> ( k2_cat_1(A,D) = B
& k3_cat_1(A,D) = C ) ) ) ) ) ) ).
fof(t25_funct_2,axiom,
! [A,B,C] :
( ( v1_funct_1(C)
& v1_funct_2(C,A,B)
& m2_relset_1(C,A,B) )
=> ( ( B = k1_xboole_0
=> A = k1_xboole_0 )
=> ( v2_funct_1(C)
<=> ! [D,E] :
( ( r2_hidden(D,A)
& r2_hidden(E,A)
& k1_funct_1(C,D) = k1_funct_1(C,E) )
=> D = E ) ) ) ) ).
fof(t2_subset,axiom,
! [A,B] :
( m1_subset_1(A,B)
=> ( v1_xboole_0(B)
| r2_hidden(A,B) ) ) ).
fof(t3_subset,axiom,
! [A,B] :
( m1_subset_1(A,k1_zfmisc_1(B))
<=> r1_tarski(A,B) ) ).
fof(t4_subset,axiom,
! [A,B,C] :
( ( r2_hidden(A,B)
& m1_subset_1(B,k1_zfmisc_1(C)) )
=> m1_subset_1(A,C) ) ).
fof(t5_subset,axiom,
! [A,B,C] :
~ ( r2_hidden(A,B)
& m1_subset_1(B,k1_zfmisc_1(C))
& v1_xboole_0(C) ) ).
fof(t6_boole,axiom,
! [A] :
( v1_xboole_0(A)
=> A = k1_xboole_0 ) ).
fof(t7_boole,axiom,
! [A,B] :
~ ( r2_hidden(A,B)
& v1_xboole_0(B) ) ).
fof(t8_boole,axiom,
! [A,B] :
~ ( v1_xboole_0(A)
& A != B
& v1_xboole_0(B) ) ).
%------------------------------------------------------------------------------