TPTP Problem File: CAT019-2.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : CAT019-2 : TPTP v9.2.1. Released v1.0.0.
% Domain : Category Theory
% Problem : Axiom of Indiscernibles
% Version : [Qua89] (equality) axioms.
% English : [all z (x=z <-> y=z)] -> x=y.
% Refs : [Qua89] Quaife (1989), Email to L. Wos
% Source : [ANL]
% Names : p15.ver2.in [ANL]
% Status : Unsatisfiable
% Rating : 0.00 v6.3.0, 0.10 v6.2.0, 0.20 v6.1.0, 0.09 v6.0.0, 0.00 v2.0.0
% Syntax : Number of clauses : 10 ( 5 unt; 0 nHn; 6 RR)
% Number of literals : 16 ( 16 equ; 7 neg)
% Maximal clause size : 3 ( 1 avg)
% Maximal term depth : 3 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 5 ( 5 usr; 2 con; 0-2 aty)
% Number of variables : 13 ( 0 sgn)
% SPC : CNF_UNS_RFO_PEQ_NUE
% Comments :
%--------------------------------------------------------------------------
%----Include Quaife's axioms for category theory
include('Axioms/CAT002-0.ax').
%--------------------------------------------------------------------------
%----c1 and c2 are Skolem functors
cnf(equality_to_c1_and_c2_1,hypothesis,
( c2 != Z
| c1 = Z ) ).
cnf(equality_to_c1_and_c2_2,hypothesis,
( c2 = Z
| c1 != Z ) ).
cnf(prove_c1_equals_c2,negated_conjecture,
c2 != c1 ).
%--------------------------------------------------------------------------