TPTP Problem File: CAT019-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : CAT019-1 : TPTP v9.0.0. Released v1.0.0.
% Domain : Category Theory
% Problem : Axiom of Indiscernibles
% Version : [Mit67] axioms.
% English : [all z (x=z <-> y=z)] -> x=y.
% Refs : [Mit67] Mitchell (1967), Theory of Categories
% Source : [ANL]
% Names : p15.ver1.in [ANL]
% Status : Unsatisfiable
% Rating : 0.00 v5.5.0, 0.06 v5.4.0, 0.07 v5.3.0, 0.17 v5.2.0, 0.00 v2.4.0, 0.17 v2.3.0, 0.00 v2.0.0
% Syntax : Number of clauses : 21 ( 7 unt; 0 nHn; 15 RR)
% Number of literals : 50 ( 6 equ; 30 neg)
% Maximal clause size : 4 ( 2 avg)
% Maximal term depth : 2 ( 1 avg)
% Number of predicates : 4 ( 3 usr; 0 prp; 1-3 aty)
% Number of functors : 5 ( 5 usr; 2 con; 0-2 aty)
% Number of variables : 54 ( 5 sgn)
% SPC : CNF_UNS_RFO_SEQ_HRN
% Comments :
%--------------------------------------------------------------------------
%----Include Mitchell's axioms for category theory
include('Axioms/CAT001-0.ax').
%--------------------------------------------------------------------------
%----c1 and c2 are Skolem constants
cnf(equality_to_c1_and_c2_1,hypothesis,
( c2 != Z
| c1 = Z ) ).
cnf(equality_to_c1_and_c2_2,hypothesis,
( c2 = Z
| c1 != Z ) ).
cnf(prove_c1_equals_c2,negated_conjecture,
c2 != c1 ).
%----The ANL group use these extra lemmas as demodulators -
%input_clause(name,status
% [++equal(domain(domain(X)),domain(X))]).
%input_clause(name,status
% [++equal(codomain(domain(X)),domain(X))]).
%input_clause(name,status
% [++equal(domain(codomain(X)),codomain(X))]).
%input_clause(name,status
% [++equal(codomain(codomain(X)),codomain(X))]).
%input_clause(name,status
% [++equal(compose(codomain(X),X),X)]).
%input_clause(name,status
% [++equal(compose(X,domain(X)),X)]).
%input_clause(name,status
% [++equal(compose(codomain(X),codomain(X)),codomain(X))]).
%input_clause(name,status
% [++equal(compose(domain(X),domain(X)),domain(X))]).
%input_clause(name,status
% [++equal(domain(compose(X,Y)),domain(Y))]).
%input_clause(name,status
% [++equal(codomain(compose(X,Y)),codomain(X))]).
%--------------------------------------------------------------------------