TPTP Problem File: CAT015-3.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : CAT015-3 : TPTP v9.0.0. Released v1.0.0.
% Domain : Category Theory
% Problem : Prove something exists
% Version : [Sco79] axioms : Reduced & Augmented > Complete.
% English : Can anything be proven to exist, directly from the axioms?
% Using all the kinds of resolution steps possible, no.
% Refs : [Sco79] Scott (1979), Identity and Existence in Intuitionist L
% Source : [ANL]
% Names : p15.related.in [ANL]
% Status : Satisfiable
% Rating : 0.11 v9.0.0, 0.10 v8.1.0, 0.00 v7.4.0, 0.09 v7.3.0, 0.00 v6.3.0, 0.12 v6.2.0, 0.10 v6.1.0, 0.00 v5.4.0, 0.10 v5.3.0, 0.11 v5.2.0, 0.10 v5.0.0, 0.11 v4.1.0, 0.00 v2.5.0, 0.33 v2.2.1, 0.25 v2.2.0, 0.67 v2.1.0, 0.00 v2.0.0
% Syntax : Number of clauses : 19 ( 4 unt; 3 nHn; 13 RR)
% Number of literals : 41 ( 16 equ; 18 neg)
% Maximal clause size : 4 ( 2 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 3 ( 2 usr; 0 prp; 1-2 aty)
% Number of functors : 4 ( 4 usr; 0 con; 1-2 aty)
% Number of variables : 34 ( 5 sgn)
% SPC : CNF_SAT_RFO_EQU_NUE
% Comments : Axioms simplified by Art Quaife.
% : Using Quaife's axiom ((x=y) | E(x) | E(y).).
%--------------------------------------------------------------------------
%----Include Scott's axioms for category theory
include('Axioms/CAT003-0.ax').
%--------------------------------------------------------------------------
%----Quaife has this written: (this looks really weird, but results from
%----having = here stand for equivalence, and it is a strange fact from
%----Scott's conception that all non-existent things are equivalent.
cnf(equal_things_exist,axiom,
( X = Y
| there_exists(X)
| there_exists(Y) ) ).
%----Denial that anything at all exists
cnf(prove_something_exists,negated_conjecture,
~ there_exists(X) ).
%----The ANL group use these lemmas as demodulators
%input_clause(name,hypothesis,
% [++equal(domain(domain(X)),domain(X))]).
%input_clause(name,hypothesis,
% [++equal(codomain(domain(X)),domain(X))]).
%input_clause(name,hypothesis,
% [++equal(domain(codomain(X)),codomain(X))]).
%input_clause(name,hypothesis,
% [++equal(codomain(codomain(X)),codomain(X))]).
%input_clause(name,hypothesis,
% [++equal(domain(compose(X,Y)),domain(Y))]).
%input_clause(name,hypothesis,
% [++equal(codomain(compose(X,Y)),codomain(X))]).
%input_clause(name,hypothesis,
% [++equal(compose(domain(X),domain(X)),domain(X))]).
%input_clause(name,hypothesis,
% [++equal(compose(codomain(X),codomain(X)),codomain(X))]).
%--------------------------------------------------------------------------