TPTP Problem File: CAT010-10.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : CAT010-10 : TPTP v9.0.0. Released v7.3.0.
% Domain : Puzzles
% Problem : If xy is defined, then codomain(xy) = codomain(x)
% Version : Especial.
% English :
% Refs : [CS18] Claessen & Smallbone (2018), Efficient Encodings of Fi
% : [Sma18] Smallbone (2018), Email to Geoff Sutcliffe
% Source : [Sma18]
% Names :
% Status : Unsatisfiable
% Rating : 0.05 v8.2.0, 0.04 v8.1.0, 0.00 v7.5.0, 0.08 v7.4.0, 0.09 v7.3.0
% Syntax : Number of clauses : 16 ( 16 unt; 0 nHn; 2 RR)
% Number of literals : 16 ( 16 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 5 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 11 ( 11 usr; 3 con; 0-4 aty)
% Number of variables : 27 ( 5 sgn)
% SPC : CNF_UNS_RFO_PEQ_UEQ
% Comments : Converted from CAT010-4 to UEQ using [CS18].
%------------------------------------------------------------------------------
cnf(ifeq_axiom,axiom,
ifeq3(A,A,B,C) = B ).
cnf(ifeq_axiom_001,axiom,
ifeq2(A,A,B,C) = B ).
cnf(ifeq_axiom_002,axiom,
ifeq(A,A,B,C) = B ).
cnf(equivalence_implies_existence1,axiom,
ifeq(equivalent(X,Y),true,there_exists(X),true) = true ).
cnf(equivalence_implies_existence2,axiom,
ifeq2(equivalent(X,Y),true,X,Y) = Y ).
cnf(existence_and_equality_implies_equivalence1,axiom,
ifeq(there_exists(Y),true,equivalent(Y,Y),true) = true ).
cnf(domain_has_elements,axiom,
ifeq(there_exists(domain(X)),true,there_exists(X),true) = true ).
cnf(codomain_has_elements,axiom,
ifeq(there_exists(codomain(X)),true,there_exists(X),true) = true ).
cnf(composition_implies_domain,axiom,
ifeq(there_exists(compose(X,Y)),true,there_exists(domain(X)),true) = true ).
cnf(domain_codomain_composition1,axiom,
ifeq2(there_exists(compose(X,Y)),true,domain(X),codomain(Y)) = codomain(Y) ).
cnf(domain_codomain_composition2,axiom,
ifeq(there_exists(domain(X)),true,ifeq3(domain(X),codomain(Y),there_exists(compose(X,Y)),true),true) = true ).
cnf(associativity_of_compose,axiom,
compose(X,compose(Y,Z)) = compose(compose(X,Y),Z) ).
cnf(compose_domain,axiom,
compose(X,domain(X)) = X ).
cnf(compose_codomain,axiom,
compose(codomain(X),X) = X ).
cnf(ab_exists,hypothesis,
there_exists(compose(a,b)) = true ).
cnf(prove_codomain_of_ab_equals_codomain_of_a,negated_conjecture,
codomain(compose(a,b)) != codomain(a) ).
%------------------------------------------------------------------------------