TPTP Problem File: CAT006-4.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : CAT006-4 : TPTP v9.0.0. Released v1.0.0.
% Domain : Category Theory
% Problem : Codomain is the unique left identity
% Version : [Sco79] axioms : Reduced > Complete.
% English : codomain(x) is the unique identity j such that jx is defined.
% Refs : [Sco79] Scott (1979), Identity and Existence in Intuitionist L
% Source : [TPTP]
% Names :
% Status : Unsatisfiable
% Rating : 0.00 v5.5.0, 0.06 v5.4.0, 0.07 v5.3.0, 0.17 v5.2.0, 0.00 v5.0.0, 0.14 v4.1.0, 0.11 v4.0.1, 0.17 v3.3.0, 0.14 v3.1.0, 0.22 v2.7.0, 0.17 v2.6.0, 0.43 v2.5.0, 0.20 v2.4.0, 0.17 v2.2.1, 0.11 v2.2.0, 0.14 v2.1.0, 0.20 v2.0.0
% Syntax : Number of clauses : 15 ( 5 unt; 0 nHn; 12 RR)
% Number of literals : 27 ( 10 equ; 13 neg)
% Maximal clause size : 3 ( 1 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 3 ( 2 usr; 0 prp; 1-2 aty)
% Number of functors : 5 ( 5 usr; 2 con; 0-2 aty)
% Number of variables : 21 ( 2 sgn)
% SPC : CNF_UNS_RFO_SEQ_HRN
% Comments : The dependent axioms have been removed.
%--------------------------------------------------------------------------
%----Include Scott's axioms for category theory
include('Axioms/CAT004-0.ax').
%--------------------------------------------------------------------------
%----Denial of theorem: d is an identity which is not cod(a),
cnf(da_exists,hypothesis,
there_exists(compose(d,a)) ).
cnf(xd_equals_x,hypothesis,
( ~ there_exists(compose(X,d))
| compose(X,d) = X ) ).
cnf(dx_equals_x,hypothesis,
( ~ there_exists(compose(d,X))
| compose(d,X) = X ) ).
cnf(prove_codomain_of_a_is_d,negated_conjecture,
codomain(a) != d ).
%--------------------------------------------------------------------------